BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38014306)

  • 1. Photobody formation spatially segregates two opposing phytochrome B signaling actions to titrate plant environmental responses.
    Kim RJA; Fan D; He J; Kim K; Du J; Chen M
    bioRxiv; 2024 Jan; ():. PubMed ID: 38014306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photobody formation spatially segregates two opposing phytochrome B signaling actions of PIF5 degradation and stabilization.
    Kim RJA; Fan D; He J; Kim K; Du J; Chen M
    Nat Commun; 2024 Apr; 15(1):3519. PubMed ID: 38664420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinguishing individual photobodies using Oligopaints reveals thermo-sensitive and -insensitive phytochrome B condensation at distinct subnuclear locations.
    Du J; Kim K; Chen M
    Nat Commun; 2024 Apr; 15(1):3620. PubMed ID: 38684657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The basic helix-loop-helix transcription factor PIF5 acts on ethylene biosynthesis and phytochrome signaling by distinct mechanisms.
    Khanna R; Shen Y; Marion CM; Tsuchisaka A; Theologis A; Schäfer E; Quail PH
    Plant Cell; 2007 Dec; 19(12):3915-29. PubMed ID: 18065691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Thermoresponsive Photobody Dynamics.
    Du J; Chen M
    Methods Mol Biol; 2024; 2795():95-104. PubMed ID: 38594531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing ambient temperature progressively disassembles Arabidopsis phytochrome B from individual photobodies with distinct thermostabilities.
    Hahm J; Kim K; Qiu Y; Chen M
    Nat Commun; 2020 Apr; 11(1):1660. PubMed ID: 32245953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TOPP4 Regulates the Stability of PHYTOCHROME INTERACTING FACTOR5 during Photomorphogenesis in Arabidopsis.
    Yue J; Qin Q; Meng S; Jing H; Gou X; Li J; Hou S
    Plant Physiol; 2016 Mar; 170(3):1381-97. PubMed ID: 26704640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytochrome B photobodies are comprised of phytochrome B and its primary and secondary interacting proteins.
    Kim C; Kwon Y; Jeong J; Kang M; Lee GS; Moon JH; Lee HJ; Park YI; Choi G
    Nat Commun; 2023 Mar; 14(1):1708. PubMed ID: 36973259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PCH1 regulates light, temperature, and circadian signaling as a structural component of phytochrome B-photobodies in
    Huang H; McLoughlin KE; Sorkin ML; Burgie ES; Bindbeutel RK; Vierstra RD; Nusinow DA
    Proc Natl Acad Sci U S A; 2019 Apr; 116(17):8603-8608. PubMed ID: 30948632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cold-Induced CBF-PIF3 Interaction Enhances Freezing Tolerance by Stabilizing the phyB Thermosensor in Arabidopsis.
    Jiang B; Shi Y; Peng Y; Jia Y; Yan Y; Dong X; Li H; Dong J; Li J; Gong Z; Thomashow MF; Yang S
    Mol Plant; 2020 Jun; 13(6):894-906. PubMed ID: 32311530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytochrome signaling in green Arabidopsis seedlings: impact assessment of a mutually negative phyB-PIF feedback loop.
    Leivar P; Monte E; Cohn MM; Quail PH
    Mol Plant; 2012 May; 5(3):734-49. PubMed ID: 22492120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific basic helix-loop-helix transcription factors.
    Khanna R; Huq E; Kikis EA; Al-Sady B; Lanzatella C; Quail PH
    Plant Cell; 2004 Nov; 16(11):3033-44. PubMed ID: 15486100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors.
    Lorrain S; Allen T; Duek PD; Whitelam GC; Fankhauser C
    Plant J; 2008 Jan; 53(2):312-23. PubMed ID: 18047474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SALT OVERLY SENSITIVE2 stabilizes phytochrome-interacting factors PIF4 and PIF5 to promote Arabidopsis shade avoidance.
    Han R; Ma L; Lv Y; Qi L; Peng J; Li H; Zhou Y; Song P; Duan J; Li J; Li Z; Terzaghi W; Guo Y; Li J
    Plant Cell; 2023 Aug; 35(8):2972-2996. PubMed ID: 37119311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red-light activation.
    Shen Y; Khanna R; Carle CM; Quail PH
    Plant Physiol; 2007 Nov; 145(3):1043-51. PubMed ID: 17827270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photobody Localization of Phytochrome B Is Tightly Correlated with Prolonged and Light-Dependent Inhibition of Hypocotyl Elongation in the Dark.
    Van Buskirk EK; Reddy AK; Nagatani A; Chen M
    Plant Physiol; 2014 Jun; 165(2):595-607. PubMed ID: 24769533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytochrome interacting factors 4 and 5 regulate axillary branching via bud abscisic acid and stem auxin signalling.
    Holalu SV; Reddy SK; Blackman BK; Finlayson SA
    Plant Cell Environ; 2020 Sep; 43(9):2224-2238. PubMed ID: 32542798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What is going on inside of phytochrome B photobodies?
    Willige BC; Yoo CY; Saldierna Guzmán JP
    Plant Cell; 2024 May; 36(6):2065-2085. PubMed ID: 38511271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FERONIA coordinates plant growth and salt tolerance via the phosphorylation of phyB.
    Liu X; Jiang W; Li Y; Nie H; Cui L; Li R; Tan L; Peng L; Li C; Luo J; Li M; Wang H; Yang J; Zhou B; Wang P; Liu H; Zhu JK; Zhao C
    Nat Plants; 2023 Apr; 9(4):645-660. PubMed ID: 37012430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of light and temperature sensing by liquid-liquid phase separation of phytochrome B.
    Chen D; Lyu M; Kou X; Li J; Yang Z; Gao L; Li Y; Fan LM; Shi H; Zhong S
    Mol Cell; 2022 Aug; 82(16):3015-3029.e6. PubMed ID: 35728588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.