These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 38014394)

  • 1. Computation meets experiment: identification of highly efficient fibrillating peptides.
    Sori L; Pizzi A; Bergamaschi G; Gori A; Gautieri A; Demitri N; Soncini M; Metrangolo P
    CrystEngComm; 2023 Aug; 25(32):4503-4510. PubMed ID: 38014394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels.
    Frederix PW; Scott GG; Abul-Haija YM; Kalafatovic D; Pappas CG; Javid N; Hunt NT; Ulijn RV; Tuttle T
    Nat Chem; 2015 Jan; 7(1):30-7. PubMed ID: 25515887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning Empowers the Discovery of Self-Assembling Peptides with Over 10 Trillion Sequences.
    Wang J; Liu Z; Zhao S; Xu T; Wang H; Li SZ; Li W
    Adv Sci (Weinh); 2023 Nov; 10(31):e2301544. PubMed ID: 37749875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid discovery of self-assembling peptides with one-bead one-compound peptide library.
    Yang PP; Li YJ; Cao Y; Zhang L; Wang JQ; Lai Z; Zhang K; Shorty D; Xiao W; Cao H; Wang L; Wang H; Liu R; Lam KS
    Nat Commun; 2021 Jul; 12(1):4494. PubMed ID: 34301935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating Computation, Experiment, and Machine Learning in the Design of Peptide-Based Supramolecular Materials and Systems.
    Ramakrishnan M; van Teijlingen A; Tuttle T; Ulijn RV
    Angew Chem Int Ed Engl; 2023 Apr; 62(18):e202218067. PubMed ID: 36725681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors Affecting Secondary and Supramolecular Structures of Self-Assembling Peptide Nanocarriers.
    Pitz ME; Nukovic AM; Elpers MA; Alexander-Bryant AA
    Macromol Biosci; 2022 Feb; 22(2):e2100347. PubMed ID: 34800001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short Peptides Derived from a Block Copolymer-like Barnacle Cement Protein Self-Assembled into Diverse Supramolecular Structures.
    Liang C; Bi X; Gan K; Wu J; He G; Xue B; Ye Z; Cao Y; Hu B
    Biomacromolecules; 2022 May; 23(5):2019-2030. PubMed ID: 35482604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computationally Guided Tuning of Amino Acid Configuration Influences the Chiroptical Properties of Supramolecular Peptide-π-Peptide Nanostructures.
    Panda SS; Shmilovich K; Ferguson AL; Tovar JD
    Langmuir; 2020 Jun; 36(24):6782-6792. PubMed ID: 32491857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Branched peptides integrate into self-assembled nanostructures and enhance biomechanics of peptidic hydrogels.
    Pugliese R; Fontana F; Marchini A; Gelain F
    Acta Biomater; 2018 Jan; 66():258-271. PubMed ID: 29128535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning overcomes human bias in the discovery of self-assembling peptides.
    Batra R; Loeffler TD; Chan H; Srinivasan S; Cui H; Korendovych IV; Nanda V; Palmer LC; Solomon LA; Fry HC; Sankaranarayanan SKRS
    Nat Chem; 2022 Dec; 14(12):1427-1435. PubMed ID: 36316409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supramolecular Interactions and Morphology of Self-Assembling Peptide Amphiphile Nanostructures.
    Sangji MH; Sai H; Chin SM; Lee SR; R Sasselli I; Palmer LC; Stupp SI
    Nano Lett; 2021 Jul; 21(14):6146-6155. PubMed ID: 34259001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Assembling Multidomain Peptides: Design and Characterization of Neutral Peptide-Based Materials with pH and Ionic Strength Independent Self-Assembly.
    Lopez-Silva TL; Leach DG; Li IC; Wang X; Hartgerink JD
    ACS Biomater Sci Eng; 2019 Feb; 5(2):977-985. PubMed ID: 31404449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Self-Assembling Peptides to Integrate Biomolecules into Functional Supramolecular Biomaterials.
    Liu R; Hudalla GA
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31013712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-Linked Self-Assembling Peptides and Their Post-Assembly Functionalization via One-Pot and In Situ Gelation System.
    Pugliese R; Gelain F
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32549405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning peptide self-assembly by an in-tether chiral center.
    Hu K; Jiang Y; Xiong W; Li H; Zhang PY; Yin F; Zhang Q; Geng H; Jiang F; Li Z; Wang X; Li Z
    Sci Adv; 2018 May; 4(5):eaar5907. PubMed ID: 29756036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the Self-Assembling Behavior of Biological Building Block Molecules: A Spectroscopic and Microscopic Approach.
    Banerjee P; Pyne A; Sarkar N
    J Phys Chem B; 2020 Mar; 124(11):2065-2080. PubMed ID: 32081003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrashort Peptides-A Glimpse into the Structural Modifications and Their Applications as Biomaterials.
    Das R; Gayakvad B; Shinde SD; Rani J; Jain A; Sahu B
    ACS Appl Bio Mater; 2020 Sep; 3(9):5474-5499. PubMed ID: 35021786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailoring of Peptide Vesicles: A Bottom-Up Chemical Approach.
    Haridas V
    Acc Chem Res; 2021 Apr; 54(8):1934-1949. PubMed ID: 33823579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving and fine-tuning the properties of peptide-based hydrogels via incorporation of peptide nucleic acids.
    Giraud T; Bouguet-Bonnet S; Marchal P; Pickaert G; Averlant-Petit MC; Stefan L
    Nanoscale; 2020 Oct; 12(38):19905-19917. PubMed ID: 32985645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.