These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 38014549)
1. Flexible, humidity- and contamination-resistant superhydrophobic MXene-based electrospun triboelectric nanogenerators for distributed energy harvesting applications. Sardana S; Sharma V; Beepat KG; Sharma DP; Chawla AK; Mahajan A Nanoscale; 2023 Dec; 15(47):19369-19380. PubMed ID: 38014549 [TBL] [Abstract][Full Text] [Related]
2. Self-Powered TENG with High Humidity Sensitivity from PVA Film Modified by LiCl and MXene. Wang J; Xia Z; Yao H; Zhang Q; Yang H ACS Appl Mater Interfaces; 2023 Oct; 15(40):47208-47220. PubMed ID: 37782003 [TBL] [Abstract][Full Text] [Related]
3. High-Output Lotus-Leaf-Bionic Triboelectric Nanogenerators Based on 2D MXene for Health Monitoring of Human Feet. Wang L; Xu H; Huang F; Tao X; Ouyang Y; Zhou Y; Mo X Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36145008 [TBL] [Abstract][Full Text] [Related]
4. Self-Repairing and Energy-Harvesting Triboelectric Sensor for Tracking Limb Motion and Identifying Breathing Patterns. Meena JS; Khanh TD; Jung SB; Kim JW ACS Appl Mater Interfaces; 2023 Jun; 15(24):29486-29498. PubMed ID: 37296075 [TBL] [Abstract][Full Text] [Related]
5. Achieving Ultrahigh Effective Surface Charge Density of Direct-Current Triboelectric Nanogenerator in High Humidity. Liu L; Zhao Z; Li Y; Li X; Liu D; Li S; Gao Y; Zhou L; Wang J; Wang ZL Small; 2022 Jun; 18(24):e2201402. PubMed ID: 35560726 [TBL] [Abstract][Full Text] [Related]
6. Remarkable Output Power Density Enhancement of Triboelectric Nanogenerators via Polarized Ferroelectric Polymers and Bulk MoS Kim M; Park D; Alam MM; Lee S; Park P; Nah J ACS Nano; 2019 Apr; 13(4):4640-4646. PubMed ID: 30875188 [TBL] [Abstract][Full Text] [Related]
7. Flexible Triboelectric Nanogenerators Based on Electrospun Poly(vinylidene fluoride) with MoS Sun C; Zu G; Wei Y; Song X; Yang X Langmuir; 2022 Feb; 38(4):1479-1487. PubMed ID: 35030000 [TBL] [Abstract][Full Text] [Related]
8. Cellulose Nanofiber-Reinforced MXene Membranes as Stable Friction Layers and Effective Electrodes for High-Performance Triboelectric Nanogenerators. Xing C; Tian Y; Yu Z; Li Z; Meng B; Peng Z ACS Appl Mater Interfaces; 2022 Aug; 14(32):36741-36752. PubMed ID: 35924833 [TBL] [Abstract][Full Text] [Related]
9. Humidity-Resistant, Conductive Fabric-Based Triboelectric Nanogenerator for Efficient Energy Harvesting and Human-Machine Interaction Sensing. He J; Xue Y; Liu H; Li J; Liu Q; Zhao Y; Mu L; Sun CL; Qu M ACS Appl Mater Interfaces; 2023 Sep; 15(37):43963-43975. PubMed ID: 37690053 [TBL] [Abstract][Full Text] [Related]
10. Enhanced Triboelectric Nanogenerators Based on MoS Wu C; Kim TW; Park JH; An H; Shao J; Chen X; Wang ZL ACS Nano; 2017 Aug; 11(8):8356-8363. PubMed ID: 28737887 [TBL] [Abstract][Full Text] [Related]
11. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. Wang ZL ACS Nano; 2013 Nov; 7(11):9533-57. PubMed ID: 24079963 [TBL] [Abstract][Full Text] [Related]
12. Enhancing the Humidity Resistance of Triboelectric Nanogenerators: A Review. Zhang J; Boyer C; Zhang YX Small; 2024 Sep; 20(36):e2401846. PubMed ID: 38686690 [TBL] [Abstract][Full Text] [Related]
13. A multifunctional triboelectric nanogenerator based on PDMS/MXene for bio-mechanical energy harvesting and volleyball training monitoring. Yang R Heliyon; 2024 Jun; 10(11):e32361. PubMed ID: 38961958 [TBL] [Abstract][Full Text] [Related]
14. All-Weather Droplet-Based Triboelectric Nanogenerator for Wave Energy Harvesting. Wei X; Zhao Z; Zhang C; Yuan W; Wu Z; Wang J; Wang ZL ACS Nano; 2021 Aug; 15(8):13200-13208. PubMed ID: 34327988 [TBL] [Abstract][Full Text] [Related]
15. A high-performance triboelectric nanogenerator with improved output stability by construction of biomimetic superhydrophobic nanoporous fibers. Zhang JH; Li Y; Hao X Nanotechnology; 2020 May; 31(21):215401. PubMed ID: 32018228 [TBL] [Abstract][Full Text] [Related]
16. Cellulose-Based Fully Green Triboelectric Nanogenerators with Output Power Density of 300 W m Zhang R; Dahlström C; Zou H; Jonzon J; Hummelgård M; Örtegren J; Blomquist N; Yang Y; Andersson H; Olsen M; Norgren M; Olin H; Wang ZL Adv Mater; 2020 Sep; 32(38):e2002824. PubMed ID: 32803872 [TBL] [Abstract][Full Text] [Related]
17. All-Cellulose Nanofiber-Based Sustainable Triboelectric Nanogenerators for Enhanced Energy Harvesting. Cao M; Chen Y; Sha J; Xu Y; Chen S; Xu F Polymers (Basel); 2024 Jun; 16(13):. PubMed ID: 39000640 [TBL] [Abstract][Full Text] [Related]
18. Superhydrophobic Water-Solid Contact Triboelectric Generator by Simple Spray-On Fabrication Method. Chung J; Heo D; Kim B; Lee S Micromachines (Basel); 2018 Nov; 9(11):. PubMed ID: 30428622 [TBL] [Abstract][Full Text] [Related]
19. A Flexible Triboelectric Nanogenerator Based on Multilayer MXene/Cellulose Nanofibril Composite Film for Patterned Electroluminescence Display. Sun Z; Chen H; Wu M; Yang W; Zhao J; Wang Z; Guo S; Wang H; Wang W; Wang J Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234111 [TBL] [Abstract][Full Text] [Related]
20. High-Performance Yet Sustainable Triboelectric Nanogenerator Based on Sulfur-Rich Polymer Composite with MXene Segregated Structure. Cho W; Kim S; Lee H; Han N; Kim H; Lee M; Han TH; Wie JJ Adv Mater; 2024 Nov; 36(44):e2404163. PubMed ID: 39108188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]