These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Rapid thermal deposited GeSe nanowires as a promising anode material for lithium-ion and sodium-ion batteries. Wang K; Liu M; Huang D; Li L; Feng K; Zhao L; Li J; Jiang F J Colloid Interface Sci; 2020 Jul; 571():387-397. PubMed ID: 32213356 [TBL] [Abstract][Full Text] [Related]
23. Toward Highly Stable Anode for Secondary Batteries: Employing TiO Luo R; Hu X; Zhang N; Li L; Wu F; Chen R Small; 2022 Mar; 18(11):e2105713. PubMed ID: 35060316 [TBL] [Abstract][Full Text] [Related]
24. Silicon hollow sphere anode with enhanced cycling stability by a template-free method. Chen S; Chen Z; Luo Y; Xia M; Cao C Nanotechnology; 2017 Apr; 28(16):165404. PubMed ID: 28337972 [TBL] [Abstract][Full Text] [Related]
25. Nanostructured Phosphorus Doped Silicon/Graphite Composite as Anode for High-Performance Lithium-Ion Batteries. Huang S; Cheong LZ; Wang D; Shen C ACS Appl Mater Interfaces; 2017 Jul; 9(28):23672-23678. PubMed ID: 28661118 [TBL] [Abstract][Full Text] [Related]
26. Metal (Cu/Fe/Mn)-Doped Silicon/Graphite Composite as a Cost-Effective Anode for Li-Ion Batteries. Nulu A; Hwang YG; Nulu V; Sohn KY Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36080040 [TBL] [Abstract][Full Text] [Related]
27. High-Performance Porous Silicon/Nanosilver Anodes from Industrial Low-Grade Silicon for Lithium-Ion Batteries. Xi F; Zhang Z; Wan X; Li S; Ma W; Chen X; Chen R; Luo B; Wang L ACS Appl Mater Interfaces; 2020 Oct; 12(43):49080-49089. PubMed ID: 33052668 [TBL] [Abstract][Full Text] [Related]
28. Reassembled graphene-platelets encapsulated silicon nanoparticles for Li-ion battery anodes. Yoon T; Cho M; Suh YW; Oh ES; Lee JK J Nanosci Nanotechnol; 2011 Nov; 11(11):10193-200. PubMed ID: 22413364 [TBL] [Abstract][Full Text] [Related]
29. Self-Repairable Silicon Anodes Using a Multifunctional Binder for High-Performance Lithium-Ion Batteries. Malik YT; Shin SY; Jang JI; Kim HM; Cho S; Do YR; Jeon JW Small; 2023 Mar; 19(9):e2206141. PubMed ID: 36538734 [TBL] [Abstract][Full Text] [Related]
30. Titania/graphene nanocomposites from scalable gas-phase synthesis for high-capacity and high-stability sodium-ion battery anodes. Al-Kamal AK; Hammad M; Yusuf Ali M; Angel S; Segets D; Schulz C; Wiggers H Nanotechnology; 2024 Mar; 35(22):. PubMed ID: 38373356 [TBL] [Abstract][Full Text] [Related]
31. Hexagonal Sb Nanocrystals as High-Capacity and Long-Cycle Anode Materials for Sodium-Ion Batteries. Zhang N; Chen X; Xu J; He P; Ding X ACS Appl Mater Interfaces; 2023 Jun; 15(22):26728-26736. PubMed ID: 37218657 [TBL] [Abstract][Full Text] [Related]
32. Engineering Bamboo Leaves Into 3D Macroporous Si@C Composites for Stable Lithium-Ion Battery Anodes. Wu H; Jiang Y; Liu W; Wen H; Dong S; Chen H; Su L; Wang L Front Chem; 2022; 10():882681. PubMed ID: 35464200 [TBL] [Abstract][Full Text] [Related]
33. Mesoporous Amorphous Silicon: A Simple Synthesis of a High-Rate and Long-Life Anode Material for Lithium-Ion Batteries. Lin L; Xu X; Chu C; Majeed MK; Yang J Angew Chem Int Ed Engl; 2016 Nov; 55(45):14063-14066. PubMed ID: 27709759 [TBL] [Abstract][Full Text] [Related]
34. Mesoporous Silicon Microspheres Produced from In Situ Magnesiothermic Reduction of Silicon Oxide for High-Performance Anode Material in Sodium-Ion Batteries. Qiu DF; Ma X; Zhang JD; Lin ZX; Zhao B Nanoscale Res Lett; 2018 Sep; 13(1):275. PubMed ID: 30203173 [TBL] [Abstract][Full Text] [Related]
35. Bowl-shaped hollow carbon wrapped in graphene grown in situ by chemical vapor deposition as an advanced anode material for sodium-ion batteries. Yang G; Zhou Z; Liu X; Zhang Y; Wang S; Yan W; Ding S J Colloid Interface Sci; 2023 May; 637():283-290. PubMed ID: 36706724 [TBL] [Abstract][Full Text] [Related]
36. Determination of Si/graphite anode composition for new generation Li-ion batteries: a case study. Kalafat İ; Yuca N Turk J Chem; 2022; 46(6):2112-2122. PubMed ID: 37621354 [TBL] [Abstract][Full Text] [Related]
37. Practical Approach to Enhance Compatibility in Silicon/Graphite Composites to Enable High-Capacity Li-Ion Battery Anodes. Naboka O; Yim CH; Abu-Lebdeh Y ACS Omega; 2021 Feb; 6(4):2644-2654. PubMed ID: 33553882 [TBL] [Abstract][Full Text] [Related]
38. Core-Shell Coating Silicon Anode Interfaces with Coordination Complex for Stable Lithium-Ion Batteries. Zhou J; Qian T; Wang M; Xu N; Zhang Q; Li Q; Yan C ACS Appl Mater Interfaces; 2016 Mar; 8(8):5358-65. PubMed ID: 26863089 [TBL] [Abstract][Full Text] [Related]
39. Controllable Self-Assembly of Micro-Nanostructured Si-Embedded Graphite/Graphene Composite Anode for High-Performance Li-Ion Batteries. Lin N; Xu T; Li T; Han Y; Qian Y ACS Appl Mater Interfaces; 2017 Nov; 9(45):39318-39325. PubMed ID: 29058864 [TBL] [Abstract][Full Text] [Related]
40. High-Value Utilization of Silicon Cutting Waste and Excrementum Bombycis to Synthesize Silicon-Carbon Composites as Anode Materials for Li-Ion Batteries. Ji H; Li J; Li S; Cui Y; Liu Z; Huang M; Xu C; Li G; Zhao Y; Li H Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014739 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]