These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38014777)

  • 1. Investigating focal spot position drift in a mobile imaging system equipped with a monobloc-based x-ray generator.
    Messner IM; Keuschnigg P; Stöllinger B; Kraihamer M; Coste-Marin J; Huber P; Kellner D; Kreuzeder EM; Steininger P; Deutschmann H
    Med Phys; 2024 May; 51(5):3578-3589. PubMed ID: 38014777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between x-ray illumination field size and flat field intensity and its impacts on x-ray imaging.
    Dong X; Niu T; Jia X; Zhu L
    Med Phys; 2012 Oct; 39(10):5901-9. PubMed ID: 23039629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving small animal cone beam CT resolution by mitigating x-ray focal spot induced blurring via deconvolution.
    Hu X; Zhong Y; Huang Y; Shen C; Jia X
    Phys Med Biol; 2022 Jun; 67(12):. PubMed ID: 35483338
    [No Abstract]   [Full Text] [Related]  

  • 4. An electromagnetic "Tracker-in-Table" configuration for X-ray fluoroscopy and cone-beam CT-guided surgery.
    Yoo J; Schafer S; Uneri A; Otake Y; Khanna AJ; Siewerdsen JH
    Int J Comput Assist Radiol Surg; 2013 Jan; 8(1):1-13. PubMed ID: 22585463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-energy blended CBCT spectral imaging and scatter-decoupled material decomposition using a spectral modulator with flying focal spot (SMFFS).
    Deng Y; Zhou H; Wang Z; Wang AS; Gao H
    Med Phys; 2024 Apr; 51(4):2398-2412. PubMed ID: 38477717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tolerance to geometrical inaccuracies in CBCT systems: A comprehensive study.
    Abella M; Martinez C; Garcia I; Moreno P; De Molina C; Desco M
    Med Phys; 2021 Oct; 48(10):6007-6019. PubMed ID: 34213782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Densely sampled spectral modulation for x-ray CT using a stationary modulator with flying focal spot: a conceptual and feasibility study of scatter and spectral correction.
    Gao H; Zhang T; Bennett NR; Wang AS
    Med Phys; 2021 Apr; 48(4):1557-1570. PubMed ID: 33420741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nine-degrees-of-freedom flexmap for a cone-beam computed tomography imaging device with independently movable source and detector.
    Keuschnigg P; Kellner D; Fritscher K; Zechner A; Mayer U; Huber P; Sedlmayer F; Deutschmann H; Steininger P
    Med Phys; 2017 Jan; 44(1):132-142. PubMed ID: 28102960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of cone-beam CT artifacts in a robotic CBCT device using saddle trajectories with integrated infrared tracking.
    Wei C; Albrecht J; Rit S; Laurendeau M; Thummerer A; Corradini S; Belka C; Steininger P; Ginzinger F; Kurz C; Riboldi M; Landry G
    Med Phys; 2024 Mar; 51(3):1674-1686. PubMed ID: 38224324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Method for measuring the focal spot size of an x-ray tube using a coded aperture mask and a digital detector.
    Russo P; Mettivier G
    Med Phys; 2011 Apr; 38(4):2099-115. PubMed ID: 21626943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of optical imaging with a small animal irradiator.
    Weersink RA; Ansell S; Wang A; Wilson G; Shah D; Lindsay PE; Jaffray DA
    Med Phys; 2014 Oct; 41(10):102701. PubMed ID: 25281980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Technical evaluation of the cone-beam computed tomography imaging performance of a novel, mobile, gantry-based X-ray system for brachytherapy.
    Karius A; Karolczak M; Strnad V; Bert C
    J Appl Clin Med Phys; 2022 Feb; 23(2):e13501. PubMed ID: 34905285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical performance and image optimization of megavoltage cone-beam CT.
    Morin O; Aubry JF; Aubin M; Chen J; Descovich M; Hashemi AB; Pouliot J
    Med Phys; 2009 Apr; 36(4):1421-32. PubMed ID: 19472649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved image quality of cone beam CT scans for radiotherapy image guidance using fiber-interspaced antiscatter grid.
    Stankovic U; van Herk M; Ploeger LS; Sonke JJ
    Med Phys; 2014 Jun; 41(6):061910. PubMed ID: 24877821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Panoramic cone beam computed tomography.
    Chang J; Zhou L; Wang S; Clifford Chao KS
    Med Phys; 2012 May; 39(5):2930-46. PubMed ID: 22559664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. C-arm orbits for metal artifact avoidance (MAA) in cone-beam CT.
    Wu P; Sheth N; Sisniega A; Uneri A; Han R; Vijayan R; Vagdargi P; Kreher B; Kunze H; Kleinszig G; Vogt S; Lo SF; Theodore N; Siewerdsen JH
    Phys Med Biol; 2020 Aug; 65(16):165012. PubMed ID: 32428891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antiscatter grids in mobile C-arm cone-beam CT: effect on image quality and dose.
    Schafer S; Stayman JW; Zbijewski W; Schmidgunst C; Kleinszig G; Siewerdsen JH
    Med Phys; 2012 Jan; 39(1):153-9. PubMed ID: 22225284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling and design of a cone-beam CT head scanner using task-based imaging performance optimization.
    Xu J; Sisniega A; Zbijewski W; Dang H; Stayman JW; Wang X; Foos DH; Aygun N; Koliatsos VE; Siewerdsen JH
    Phys Med Biol; 2016 Apr; 61(8):3180-207. PubMed ID: 27025783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interleaved acquisition for cross scatter avoidance in dual cone-beam CT.
    Giles W; Bowsher J; Li H; Yin FF
    Med Phys; 2012 Dec; 39(12):7719-28. PubMed ID: 23231319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model-based scatter artifacts correction for cone beam CT.
    Zhao W; Vernekohl D; Zhu J; Wang L; Xing L
    Med Phys; 2016 Apr; 43(4):1736. PubMed ID: 27036571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.