These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 38014957)

  • 1. Identification of an operon and its regulator required for autoaggregation in
    Endo R; Hotta S; Wakinaka T; Mogi Y; Watanabe J
    Appl Environ Microbiol; 2023 Dec; 89(12):e0145823. PubMed ID: 38014957
    [No Abstract]   [Full Text] [Related]  

  • 2. Polysaccharide intercellular adhesin and proper phospholipid composition are important for aggregation in
    Yanagihara A; Matsue K; Kobayashi K; Wakinaka T; Mogi Y; Watanabe J
    Appl Environ Microbiol; 2024 May; 90(5):e0033424. PubMed ID: 38624197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transposition of IS
    Wakinaka T; Watanabe J
    Appl Environ Microbiol; 2019 May; 85(10):. PubMed ID: 30877114
    [No Abstract]   [Full Text] [Related]  

  • 4. Identification of the putative
    Shirakawa D; Wakinaka T; Watanabe J
    Biosci Biotechnol Biochem; 2020 Aug; 84(8):1724-1735. PubMed ID: 32448081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of halophilic lactic acid bacteria possessing aspartate decarboxylase and application to fish sauce fermentation starter.
    Wakinaka T; Iwata S; Takeishi Y; Watanabe J; Mogi Y; Tsukioka Y; Shibata Y
    Int J Food Microbiol; 2019 Mar; 292():137-143. PubMed ID: 30599453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of Tetragenococcus halophilus as a starter culture for flavor improvement in fish sauce fermentation.
    Udomsil N; Rodtong S; Choi YJ; Hua Y; Yongsawatdigul J
    J Agric Food Chem; 2011 Aug; 59(15):8401-8. PubMed ID: 21710980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of viable bacterial starter cultures of Virgibacillus sp. and Tetragenococcus halophilus in fish sauce fermentation by real-time quantitative PCR.
    Udomsil N; Chen S; Rodtong S; Yongsawatdigul J
    Food Microbiol; 2016 Aug; 57():54-62. PubMed ID: 27052702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Tetragenococcus halophilus and Candida versatilis on the production of aroma-active and umami-taste compounds during soy sauce fermentation.
    Zhang L; Zhang L; Xu Y
    J Sci Food Agric; 2020 Apr; 100(6):2782-2790. PubMed ID: 32020610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ratio of Histamine-Producing/Non-Histamine-Producing Subgroups of Tetragenococcus halophilus Determines the Histamine Accumulation during Spontaneous Fermentation of Soy Sauce.
    Ma J; Nie Y; Zhang L; Xu Y
    Appl Environ Microbiol; 2023 Mar; 89(3):e0188422. PubMed ID: 36802225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted Screening for Spontaneous Insertion Mutations in a Lactic Acid Bacterium, Tetragenococcus halophilus.
    Nukagawa Y; Wakinaka T; Mogi Y; Watanabe J
    Appl Environ Microbiol; 2023 Mar; 89(3):e0200522. PubMed ID: 36809065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The diversity among the species Tetragenococcus halophilus including new isolates from a lupine seed fermentation.
    Link T; Vogel RF; Ehrmann MA
    BMC Microbiol; 2021 Nov; 21(1):320. PubMed ID: 34798831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Survival strategy of the salt-tolerant lactic acid bacterium, Tetragenococcus halophilus, to counteract koji mold, Aspergillus oryzae, in soy sauce brewing.
    Nishimura I; Shinohara Y; Oguma T; Koyama Y
    Biosci Biotechnol Biochem; 2018 Aug; 82(8):1437-1443. PubMed ID: 29629630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of co-inoculation and sequential inoculation of Tetragenococcus halophilus and Zygosaccharomyces rouxii on soy sauce fermentation.
    Devanthi PVP; Linforth R; Onyeaka H; Gkatzionis K
    Food Chem; 2018 Feb; 240():1-8. PubMed ID: 28946215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Segregation of Tetragenococcus halophilus and Zygosaccharomyces rouxii using W
    Devanthi PVP; El Kadri H; Bowden A; Spyropoulos F; Gkatzionis K
    Food Res Int; 2018 Mar; 105():333-343. PubMed ID: 29433222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptomic profiling reveals differences in the adaptation of two Tetragenococcus halophilus strains to a lupine moromi model medium.
    Link T; Ehrmann MA
    BMC Microbiol; 2023 Jan; 23(1):14. PubMed ID: 36639757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fermentation of high-salt liquid-state soy sauce without any additives by inoculation of lactic acid bacteria and yeast.
    Liu R; Gao G; Bai Y; Hou L
    Food Sci Technol Int; 2020 Oct; 26(7):642-654. PubMed ID: 32375497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Examining the impact of
    Wang Q; Cui R; Liu X; Zheng X; Yao Y; Zhao G
    Crit Rev Food Sci Nutr; 2023 Jul; ():1-12. PubMed ID: 37395610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of halophilic lactic acid bacteria acting as a starter culture for sauce fermentation of the red alga Nori (Porphyra yezoensis).
    Uchida M; Miyoshi T; Yoshida G; Niwa K; Mori M; Wakabayashi H
    J Appl Microbiol; 2014 Jun; 116(6):1506-20. PubMed ID: 24494732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The evolutionary mechanism and function analysis of two subgroups of histamine-producing and non-histamine-producing Tetragenococcus halophilus.
    Ma J; Nie Y; Zhang L; Xu Y
    Food Res Int; 2024 Jan; 176():113744. PubMed ID: 38163696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the two nonidentical ArgR regulators of Tetragenococcus halophilus and their regulatory effects on arginine metabolism.
    Lin J; Luo X; Gänzle MG; Luo L
    Appl Microbiol Biotechnol; 2020 Oct; 104(20):8775-8787. PubMed ID: 32880693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.