These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 38015079)
1. Feasibility and performance of cross-clone Raman calibration models in CHO cultivation. Machleid R; Hoehse M; Scholze S; Mazarakis K; Nilsson D; Johansson E; Zehe C; Trygg J; Grimm C; Surowiec I Biotechnol J; 2024 Jan; 19(1):e2300289. PubMed ID: 38015079 [TBL] [Abstract][Full Text] [Related]
2. Development of generic metabolic Raman calibration models using solution titration in aqueous phase and data augmentation for in-line cell culture analysis. Zhang Z; Lang Z; Chen G; Zhou H; Zhou W Biotechnol Bioeng; 2024 Jul; 121(7):2193-2204. PubMed ID: 38639160 [TBL] [Abstract][Full Text] [Related]
3. Development of an in-line Raman analytical method for commercial-scale CHO cell culture process monitoring: Influence of measurement channels and batch number on model performance. Yan X; Dong X; Wan Y; Gao D; Chen Z; Zhang Y; Zheng Z; Chen K; Jiao J; Sun Y; He Z; Nie L; Fan X; Wang H; Qu H Biotechnol J; 2024 Jan; 19(1):e2300395. PubMed ID: 38180295 [TBL] [Abstract][Full Text] [Related]
4. Monitoring mAb cultivations with in-situ raman spectroscopy: The influence of spectral selectivity on calibration models and industrial use as reliable PAT tool. Santos RM; Kessler JM; Salou P; Menezes JC; Peinado A Biotechnol Prog; 2018 May; 34(3):659-670. PubMed ID: 29603907 [TBL] [Abstract][Full Text] [Related]
5. Improving reliability of Raman spectroscopy for mAb production by upstream processes during bioprocess development stages. Santos RM; Kaiser P; Menezes JC; Peinado A Talanta; 2019 Jul; 199():396-406. PubMed ID: 30952275 [TBL] [Abstract][Full Text] [Related]
6. Raman-based dynamic feeding strategies using real-time glucose concentration monitoring system during adalimumab producing CHO cell cultivation. Domján J; Fricska A; Madarász L; Gyürkés M; Köte Á; Farkas A; Vass P; Fehér C; Horváth B; Könczöl K; Pataki H; Nagy ZK; Marosi GJ; Hirsch E Biotechnol Prog; 2020 Nov; 36(6):e3052. PubMed ID: 32692473 [TBL] [Abstract][Full Text] [Related]
7. Generic Chemometric Models for Metabolite Concentration Prediction Based on Raman Spectra. Yousefi-Darani A; Paquet-Durand O; Von Wrochem A; Classen J; Tränkle J; Mertens M; Snelders J; Chotteau V; Mäkinen M; Handl A; Kadisch M; Lang D; Dumas P; Hitzmann B Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898085 [TBL] [Abstract][Full Text] [Related]
8. Tuning monoclonal antibody galactosylation using Raman spectroscopy-controlled lactic acid feeding. W Eyster T; Talwar S; Fernandez J; Foster S; Hayes J; Allen R; Reidinger S; Wan B; Ji X; Aon J; Patel P; Ritz DB Biotechnol Prog; 2021 Jan; 37(1):e3085. PubMed ID: 32975043 [TBL] [Abstract][Full Text] [Related]
9. In situ Raman spectroscopy for simultaneous monitoring of multiple process parameters in mammalian cell culture bioreactors. Whelan J; Craven S; Glennon B Biotechnol Prog; 2012; 28(5):1355-62. PubMed ID: 22740438 [TBL] [Abstract][Full Text] [Related]
10. Generic Raman-based calibration models enabling real-time monitoring of cell culture bioreactors. Mehdizadeh H; Lauri D; Karry KM; Moshgbar M; Procopio-Melino R; Drapeau D Biotechnol Prog; 2015; 31(4):1004-13. PubMed ID: 25825868 [TBL] [Abstract][Full Text] [Related]
12. Analysis of chemometric models applied to Raman spectroscopy for monitoring key metabolites of cell culture. Rafferty C; Johnson K; O'Mahony J; Burgoyne B; Rea R; Balss KM Biotechnol Prog; 2020 Jul; 36(4):e2977. PubMed ID: 32012476 [TBL] [Abstract][Full Text] [Related]
13. Comparison of multivariate data analysis techniques to improve glucose concentration prediction in mammalian cell cultivations by Raman spectroscopy. Kozma B; Salgó A; Gergely S J Pharm Biomed Anal; 2018 Sep; 158():269-279. PubMed ID: 29894949 [TBL] [Abstract][Full Text] [Related]
14. Performance monitoring of a mammalian cell based bioprocess using Raman spectroscopy. Li B; Ray BH; Leister KJ; Ryder AG Anal Chim Acta; 2013 Sep; 796():84-91. PubMed ID: 24016587 [TBL] [Abstract][Full Text] [Related]
15. On-line prediction of the glucose concentration of CHO cell cultivations by NIR and Raman spectroscopy: Comparative scalability test with a shake flask model system. Kozma B; Hirsch E; Gergely S; Párta L; Pataki H; Salgó A J Pharm Biomed Anal; 2017 Oct; 145():346-355. PubMed ID: 28711673 [TBL] [Abstract][Full Text] [Related]
16. Closed loop control of lactate concentration in mammalian cell culture by Raman spectroscopy leads to improved cell density, viability, and biopharmaceutical protein production. Matthews TE; Berry BN; Smelko J; Moretto J; Moore B; Wiltberger K Biotechnol Bioeng; 2016 Nov; 113(11):2416-24. PubMed ID: 27215441 [TBL] [Abstract][Full Text] [Related]
17. Development of Raman Calibration Model Without Culture Data for In-Line Analysis of Metabolites in Cell Culture Media. Hara R; Kobayashi W; Yamanaka H; Murayama K; Shimoda S; Ozaki Y Appl Spectrosc; 2023 May; 77(5):521-533. PubMed ID: 36765462 [TBL] [Abstract][Full Text] [Related]
18. Cross-scale predictive modeling of CHO cell culture growth and metabolites using Raman spectroscopy and multivariate analysis. Berry B; Moretto J; Matthews T; Smelko J; Wiltberger K Biotechnol Prog; 2015; 31(2):566-77. PubMed ID: 25504860 [TBL] [Abstract][Full Text] [Related]
19. Robust platform for inline Raman monitoring and control of perfusion cell culture. Wan B; Patel M; Zhou G; Olma M; Bieri M; Mueller M; Appiah-Amponsah E; Patel B; Jayapal K Biotechnol Bioeng; 2024 May; 121(5):1688-1701. PubMed ID: 38393313 [TBL] [Abstract][Full Text] [Related]
20. Metabolic engineering of CHO cells to alter lactate metabolism during fed-batch cultures. Toussaint C; Henry O; Durocher Y J Biotechnol; 2016 Jan; 217():122-31. PubMed ID: 26603123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]