BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38015104)

  • 1. Expressing Optogenetic Actuators Fused to N-terminal Mucin Motifs Delivers Targets to Specific Subcellular Compartments in Polarized Cells.
    Wang J; Platz-Baudin E; Noetzel E; Offenhäusser A; Maybeck V
    Adv Biol (Weinh); 2024 Mar; 8(3):e2300428. PubMed ID: 38015104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetic Tools for Subcellular Applications in Neuroscience.
    Rost BR; Schneider-Warme F; Schmitz D; Hegemann P
    Neuron; 2017 Nov; 96(3):572-603. PubMed ID: 29096074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetic Modulation of Ion Channels by Photoreceptive Proteins.
    Tsukamoto H; Furutani Y
    Adv Exp Med Biol; 2021; 1293():73-88. PubMed ID: 33398808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetic control of iPS cell-derived neurons in 2D and 3D culture systems using channelrhodopsin-2 expression driven by the synapsin-1 and calcium-calmodulin kinase II promoters.
    Lee SY; George JH; Nagel DA; Ye H; Kueberuwa G; Seymour LW
    J Tissue Eng Regen Med; 2019 Mar; 13(3):369-384. PubMed ID: 30550638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of channelrhodopsin-2 localized within the deep CA1 hippocampal sublayer in the Thy1 line 18 mouse.
    Dobbins DL; Klorig DC; Smith T; Godwin DW
    Brain Res; 2018 Jan; 1679():179-184. PubMed ID: 29191773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of drugs of abuse on channelrhodopsin-2 function.
    Gioia DA; Xu M; Wayman WN; Woodward JJ
    Neuropharmacology; 2018 Jun; 135():316-327. PubMed ID: 29580953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. rAAV-mediated subcellular targeting of optogenetic tools in retinal ganglion cells in vivo.
    Wu C; Ivanova E; Zhang Y; Pan ZH
    PLoS One; 2013; 8(6):e66332. PubMed ID: 23799092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in cellular optogenetics for photomedicine.
    Chen B; Cui M; Wang Y; Shi P; Wang H; Wang F
    Adv Drug Deliv Rev; 2022 Sep; 188():114457. PubMed ID: 35843507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing the expression level of ChR2 enhances the optogenetic excitability of cochlear neurons.
    Meng X; Murali S; Cheng YF; Lu J; Hight AE; Kanumuri VV; Brown MC; Holt JR; Lee DJ; Edge ASB
    J Neurophysiol; 2019 Nov; 122(5):1962-1974. PubMed ID: 31533018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An engineered channelrhodopsin optimized for axon terminal activation and circuit mapping.
    Hamada S; Nagase M; Yoshizawa T; Hagiwara A; Isomura Y; Watabe AM; Ohtsuka T
    Commun Biol; 2021 Apr; 4(1):461. PubMed ID: 33846537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of optogenetic actuators in cultured astrocytes.
    Figueiredo M; Lane S; Stout RF; Liu B; Parpura V; Teschemacher AG; Kasparov S
    Cell Calcium; 2014 Sep; 56(3):208-14. PubMed ID: 25109549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical manipulation of local cerebral blood flow in the deep brain of freely moving mice.
    Abe Y; Kwon S; Oishi M; Unekawa M; Takata N; Seki F; Koyama R; Abe M; Sakimura K; Masamoto K; Tomita Y; Okano H; Mushiake H; Tanaka KF
    Cell Rep; 2021 Jul; 36(4):109427. PubMed ID: 34320360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optogenetic patterning of whisker-barrel cortical system in transgenic rat expressing channelrhodopsin-2.
    Honjoh T; Ji ZG; Yokoyama Y; Sumiyoshi A; Shibuya Y; Matsuzaka Y; Kawashima R; Mushiake H; Ishizuka T; Yawo H
    PLoS One; 2014; 9(4):e93706. PubMed ID: 24695456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optogenetics in Drosophila Neuroscience.
    Riemensperger T; Kittel RJ; Fiala A
    Methods Mol Biol; 2016; 1408():167-75. PubMed ID: 26965122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Termination of re-entrant atrial tachycardia via optogenetic stimulation with optimized spatial targeting: insights from computational models.
    Boyle PM; Murphy MJ; Karathanos TV; Zahid S; Blake RC; Trayanova NA
    J Physiol; 2018 Jan; 596(2):181-196. PubMed ID: 29193078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optogenetic approaches to characterize the long-range synaptic pathways from the hypothalamus to brain stem autonomic nuclei.
    Piñol RA; Bateman R; Mendelowitz D
    J Neurosci Methods; 2012 Sep; 210(2):238-46. PubMed ID: 22890236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optogenetic recruitment of spinal reflex pathways from large-diameter primary afferents in non-transgenic rats transduced with AAV9/Channelrhodopsin 2.
    Kubota S; Sidikejiang W; Kudo M; Inoue KI; Umeda T; Takada M; Seki K
    J Physiol; 2019 Oct; 597(19):5025-5040. PubMed ID: 31397900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a novel optogenetic indicator based on cellular deformations for mapping optogenetic activities.
    Li G; Yang J; Wang Y; Wang W; Liu L
    Nanoscale; 2018 Dec; 10(45):21046-21051. PubMed ID: 30276394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Channelrhodopsins: From Phototaxis to Optogenetics.
    Govorunova EG; Sineshchekov OA
    Biochemistry (Mosc); 2023 Oct; 88(10):1555-1570. PubMed ID: 38105024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optogenetic Methods for the Study of Circadian Rhythms.
    Jones JR; Tackenberg MC; McMahon DG
    Methods Mol Biol; 2021; 2130():325-336. PubMed ID: 33284455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.