These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 38015257)

  • 1. Modelling microtube driven invasion of glioma.
    Hillen T; Loy N; Painter KJ; Thiessen R
    J Math Biol; 2023 Nov; 88(1):4. PubMed ID: 38015257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical modelling of glioma growth: the use of Diffusion Tensor Imaging (DTI) data to predict the anisotropic pathways of cancer invasion.
    Painter KJ; Hillen T
    J Theor Biol; 2013 Apr; 323():25-39. PubMed ID: 23376578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Density-dependent quiescence in glioma invasion: instability in a simple reaction-diffusion model for the migration/proliferation dichotomy.
    Pham K; Chauviere A; Hatzikirou H; Li X; Byrne HM; Cristini V; Lowengrub J
    J Biol Dyn; 2012; 6 Suppl 1(0 1):54-71. PubMed ID: 22873675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Patient-Specific Anisotropic Diffusion Model for Brain Tumour Spread.
    Swan A; Hillen T; Bowman JC; Murtha AD
    Bull Math Biol; 2018 May; 80(5):1259-1291. PubMed ID: 28493055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glioma invasion and its interplay with nervous tissue and therapy: A multiscale model.
    Conte M; Gerardo-Giorda L; Groppi M
    J Theor Biol; 2020 Feb; 486():110088. PubMed ID: 31756339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective equations for anisotropic glioma spread with proliferation: a multiscale approach and comparisons with previous settings.
    Engwer C; Hunt A; Surulescu C
    Math Med Biol; 2016 Dec; 33(4):435-459. PubMed ID: 26363335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glioma follow white matter tracts: a multiscale DTI-based model.
    Engwer C; Hillen T; Knappitsch M; Surulescu C
    J Math Biol; 2015 Sep; 71(3):551-82. PubMed ID: 25212910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical modelling of microtumour infiltration based on in vitro experiments.
    Luján E; Guerra LN; Soba A; Visacovsky N; Gandía D; Calvo JC; Suárez C
    Integr Biol (Camb); 2016 Aug; 8(8):879-85. PubMed ID: 27466056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain tumour cells interconnect to a functional and resistant network.
    Osswald M; Jung E; Sahm F; Solecki G; Venkataramani V; Blaes J; Weil S; Horstmann H; Wiestler B; Syed M; Huang L; Ratliff M; Karimian Jazi K; Kurz FT; Schmenger T; Lemke D; Gömmel M; Pauli M; Liao Y; Häring P; Pusch S; Herl V; Steinhäuser C; Krunic D; Jarahian M; Miletic H; Berghoff AS; Griesbeck O; Kalamakis G; Garaschuk O; Preusser M; Weiss S; Liu H; Heiland S; Platten M; Huber PE; Kuner T; von Deimling A; Wick W; Winkler F
    Nature; 2015 Dec; 528(7580):93-8. PubMed ID: 26536111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulating PDGF-Driven Glioma Growth and Invasion in an Anatomically Accurate Brain Domain.
    Massey SC; Rockne RC; Hawkins-Daarud A; Gallaher J; Anderson ARA; Canoll P; Swanson KR
    Bull Math Biol; 2018 May; 80(5):1292-1309. PubMed ID: 28842831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating the extent of glioblastoma invasion : Approximate stationalization of anisotropic advection-diffusion-reaction equations in the context of glioblastoma invasion.
    Engwer C; Wenske M
    J Math Biol; 2021 Jan; 82(1-2):10. PubMed ID: 33496806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging.
    Jbabdi S; Mandonnet E; Duffau H; Capelle L; Swanson KR; Pélégrini-Issac M; Guillevin R; Benali H
    Magn Reson Med; 2005 Sep; 54(3):616-24. PubMed ID: 16088879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Silico Neuro-Oncology: Brownian Motion-Based Mathematical Treatment as a Potential Platform for Modeling the Infiltration of Glioma Cells into Normal Brain Tissue.
    Antonopoulos M; Stamatakos G
    Cancer Inform; 2015; 14(Suppl 4):33-40. PubMed ID: 26309390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A complete mathematical study of a 3D model of heterogeneous and anisotropic glioma evolution.
    Roniotis A; Marias K; Sakkalis V; Tsibidis GD; Zervakis M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2807-10. PubMed ID: 19964265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutamatergic synaptic input to glioma cells drives brain tumour progression.
    Venkataramani V; Tanev DI; Strahle C; Studier-Fischer A; Fankhauser L; Kessler T; Körber C; Kardorff M; Ratliff M; Xie R; Horstmann H; Messer M; Paik SP; Knabbe J; Sahm F; Kurz FT; Acikgöz AA; Herrmannsdörfer F; Agarwal A; Bergles DE; Chalmers A; Miletic H; Turcan S; Mawrin C; Hänggi D; Liu HK; Wick W; Winkler F; Kuner T
    Nature; 2019 Sep; 573(7775):532-538. PubMed ID: 31534219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mathematical model of glioma growth: the effect of extent of surgical resection.
    Woodward DE; Cook J; Tracqui P; Cruywagen GC; Murray JD; Alvord EC
    Cell Prolif; 1996 Jun; 29(6):269-88. PubMed ID: 8809120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer simulation of glioma growth and morphology.
    Frieboes HB; Lowengrub JS; Wise S; Zheng X; Macklin P; Bearer EL; Cristini V
    Neuroimage; 2007; 37 Suppl 1(Suppl 1):S59-70. PubMed ID: 17475515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capturing the Dynamics of a Hybrid Multiscale Cancer Model with a Continuum Model.
    Joshi TV; Avitabile D; Owen MR
    Bull Math Biol; 2018 Jun; 80(6):1435-1475. PubMed ID: 29549576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mix and Match: Phenotypic Coexistence as a Key Facilitator of Cancer Invasion.
    Strobl MAR; Krause AL; Damaghi M; Gillies R; Anderson ARA; Maini PK
    Bull Math Biol; 2020 Jan; 82(1):15. PubMed ID: 31953602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.