BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 38015437)

  • 21. Sequencing of animal viruses: quality data assurance for NGS bioinformatics.
    Zamperin G; Lucas P; Cano I; Ryder D; Abbadi M; Stone D; Cuenca A; Vigouroux E; Blanchard Y; Panzarin V
    Virol J; 2019 Nov; 16(1):140. PubMed ID: 31752912
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessing the necessity of confirmatory testing for exome-sequencing results in a clinical molecular diagnostic laboratory.
    Strom SP; Lee H; Das K; Vilain E; Nelson SF; Grody WW; Deignan JL
    Genet Med; 2014 Jul; 16(7):510-5. PubMed ID: 24406459
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Validation and assessment of variant calling pipelines for next-generation sequencing.
    Pirooznia M; Kramer M; Parla J; Goes FS; Potash JB; McCombie WR; Zandi PP
    Hum Genomics; 2014 Jul; 8(1):14. PubMed ID: 25078893
    [TBL] [Abstract][Full Text] [Related]  

  • 24. GATK hard filtering: tunable parameters to improve variant calling for next generation sequencing targeted gene panel data.
    De Summa S; Malerba G; Pinto R; Mori A; Mijatovic V; Tommasi S
    BMC Bioinformatics; 2017 Mar; 18(Suppl 5):119. PubMed ID: 28361668
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clinical exome sequencing-Mistakes and caveats.
    Corominas J; Smeekens SP; Nelen MR; Yntema HG; Kamsteeg EJ; Pfundt R; Gilissen C
    Hum Mutat; 2022 Aug; 43(8):1041-1055. PubMed ID: 35191116
    [TBL] [Abstract][Full Text] [Related]  

  • 26. From Wet-Lab to Variations: Concordance and Speed of Bioinformatics Pipelines for Whole Genome and Whole Exome Sequencing.
    Laurie S; Fernandez-Callejo M; Marco-Sola S; Trotta JR; Camps J; Chacón A; Espinosa A; Gut M; Gut I; Heath S; Beltran S
    Hum Mutat; 2016 Dec; 37(12):1263-1271. PubMed ID: 27604516
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reference standards for next-generation sequencing.
    Hardwick SA; Deveson IW; Mercer TR
    Nat Rev Genet; 2017 Aug; 18(8):473-484. PubMed ID: 28626224
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of solution-based exome capture methods for next generation sequencing.
    Sulonen AM; Ellonen P; Almusa H; Lepistö M; Eldfors S; Hannula S; Miettinen T; Tyynismaa H; Salo P; Heckman C; Joensuu H; Raivio T; Suomalainen A; Saarela J
    Genome Biol; 2011 Sep; 12(9):R94. PubMed ID: 21955854
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Performance evaluation method for read mapping tool in clinical panel sequencing.
    Lee H; Lee KW; Lee T; Park D; Chung J; Lee C; Park WY; Son DS
    Genes Genomics; 2018; 40(2):189-197. PubMed ID: 29568413
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A machine learning model to determine the accuracy of variant calls in capture-based next generation sequencing.
    van den Akker J; Mishne G; Zimmer AD; Zhou AY
    BMC Genomics; 2018 Apr; 19(1):263. PubMed ID: 29665779
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Whole-Exome Sequencing (WES) for Illumina Short Read Sequencers Using Solution-Based Capture.
    Mahajan MC; McLellan AS
    Methods Mol Biol; 2020; 2076():85-108. PubMed ID: 31586323
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multi-perspective quality control of Illumina exome sequencing data using QC3.
    Guo Y; Zhao S; Sheng Q; Ye F; Li J; Lehmann B; Pietenpol J; Samuels DC; Shyr Y
    Genomics; 2014; 103(5-6):323-8. PubMed ID: 24703969
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CSN and CAVA: variant annotation tools for rapid, robust next-generation sequencing analysis in the clinical setting.
    Münz M; Ruark E; Renwick A; Ramsay E; Clarke M; Mahamdallie S; Cloke V; Seal S; Strydom A; Lunter G; Rahman N
    Genome Med; 2015 Jul; 7(1):76. PubMed ID: 26315209
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Clinical application of next-generation sequencing for Mendelian diseases.
    Jamuar SS; Tan EC
    Hum Genomics; 2015 Jun; 9(1):10. PubMed ID: 26076878
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Challenges in exome analysis by LifeScope and its alternative computational pipelines.
    Pranckevičiene E; Rančelis T; Pranculis A; Kučinskas V
    BMC Res Notes; 2015 Sep; 8():421. PubMed ID: 26346699
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioinformatics Basics for High-Throughput Hybridization-Based Targeted DNA Sequencing from FFPE-Derived Tumor Specimens: From Reads to Variants.
    Sun S; Murray SS
    Methods Mol Biol; 2019; 1908():37-48. PubMed ID: 30649719
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NGS_SNPAnalyzer: a desktop software supporting genome projects by identifying and visualizing sequence variations from next-generation sequencing data.
    Lee DJ; Kwon T; Kim CK; Seol YJ; Park DS; Lee TH; Ahn BO
    Genes Genomics; 2020 Nov; 42(11):1311-1317. PubMed ID: 32980993
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A customized scaffolds approach for the detection and phasing of complex variants by next-generation sequencing.
    Zeng Q; Leach NT; Zhou Z; Zhu H; Smith JA; Rosenblum LS; Kenyon A; Heim RA; Eisenberg M; Letovsky S; Okamoto PM
    Sci Rep; 2020 Sep; 10(1):15060. PubMed ID: 32929119
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A benchmark study on error-correction by read-pairing and tag-clustering in amplicon-based deep sequencing.
    Zhang TH; Wu NC; Sun R
    BMC Genomics; 2016 Feb; 17():108. PubMed ID: 26868371
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimized detection of insertions/deletions (INDELs) in whole-exome sequencing data.
    Kim BY; Park JH; Jo HY; Koo SK; Park MH
    PLoS One; 2017; 12(8):e0182272. PubMed ID: 28792971
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.