These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 38015443)
21. Reconstruct high-resolution 3D genome structures for diverse cell-types using FLAMINGO. Wang H; Yang J; Zhang Y; Qian J; Wang J Nat Commun; 2022 May; 13(1):2645. PubMed ID: 35551182 [TBL] [Abstract][Full Text] [Related]
22. HiCARN: resolution enhancement of Hi-C data using cascading residual networks. Hicks P; Oluwadare O Bioinformatics; 2022 Apr; 38(9):2414-2421. PubMed ID: 35274679 [TBL] [Abstract][Full Text] [Related]
23. Microrheology for Hi-C Data Reveals the Spectrum of the Dynamic 3D Genome Organization. Shinkai S; Sugawara T; Miura H; Hiratani I; Onami S Biophys J; 2020 May; 118(9):2220-2228. PubMed ID: 32191860 [TBL] [Abstract][Full Text] [Related]
32. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization. Knoch TA Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668 [TBL] [Abstract][Full Text] [Related]
33. A (3D-Nuclear) Space Odyssey: Making Sense of Hi-C Maps. Mota-Gómez I; Lupiáñez DG Genes (Basel); 2019 May; 10(6):. PubMed ID: 31146487 [TBL] [Abstract][Full Text] [Related]
37. Using DNase Hi-C techniques to map global and local three-dimensional genome architecture at high resolution. Ma W; Ay F; Lee C; Gulsoy G; Deng X; Cook S; Hesson J; Cavanaugh C; Ware CB; Krumm A; Shendure J; Blau CA; Disteche CM; Noble WS; Duan Z Methods; 2018 Jun; 142():59-73. PubMed ID: 29382556 [TBL] [Abstract][Full Text] [Related]
38. Iteratively improving Hi-C experiments one step at a time. Golloshi R; Sanders JT; McCord RP Methods; 2018 Jun; 142():47-58. PubMed ID: 29723572 [TBL] [Abstract][Full Text] [Related]