These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 38015443)

  • 21. Reconstruct high-resolution 3D genome structures for diverse cell-types using FLAMINGO.
    Wang H; Yang J; Zhang Y; Qian J; Wang J
    Nat Commun; 2022 May; 13(1):2645. PubMed ID: 35551182
    [TBL] [Abstract][Full Text] [Related]  

  • 22. HiCARN: resolution enhancement of Hi-C data using cascading residual networks.
    Hicks P; Oluwadare O
    Bioinformatics; 2022 Apr; 38(9):2414-2421. PubMed ID: 35274679
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microrheology for Hi-C Data Reveals the Spectrum of the Dynamic 3D Genome Organization.
    Shinkai S; Sugawara T; Miura H; Hiratani I; Onami S
    Biophys J; 2020 May; 118(9):2220-2228. PubMed ID: 32191860
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mammalian Micro-C-XL.
    Krietenstein N; Rando OJ
    Methods Mol Biol; 2022; 2458():321-332. PubMed ID: 35103975
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ParticleChromo3D: a Particle Swarm Optimization algorithm for chromosome 3D structure prediction from Hi-C data.
    Vadnais D; Middleton M; Oluwadare O
    BioData Min; 2022 Sep; 15(1):19. PubMed ID: 36131326
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GSDB: a database of 3D chromosome and genome structures reconstructed from Hi-C data.
    Oluwadare O; Highsmith M; Turner D; Lieberman Aiden E; Cheng J
    BMC Mol Cell Biol; 2020 Aug; 21(1):60. PubMed ID: 32758136
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chromosome Conformation Capture Followed by Genome-Wide Sequencing (Hi-C) in Drosophila Embryos.
    Cardamone F; Zhan Y; Iovino N; Zenk F
    Methods Mol Biol; 2023; 2655():41-55. PubMed ID: 37212987
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural Modeling of Chromatin Integrates Genome Features and Reveals Chromosome Folding Principle.
    Xie WJ; Meng L; Liu S; Zhang L; Cai X; Gao YQ
    Sci Rep; 2017 Jun; 7(1):2818. PubMed ID: 28588240
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hi-CO: 3D genome structure analysis with nucleosome resolution.
    Ohno M; Ando T; Priest DG; Taniguchi Y
    Nat Protoc; 2021 Jul; 16(7):3439-3469. PubMed ID: 34050337
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D structures of individual mammalian genomes studied by single-cell Hi-C.
    Stevens TJ; Lando D; Basu S; Atkinson LP; Cao Y; Lee SF; Leeb M; Wohlfahrt KJ; Boucher W; O'Shaughnessy-Kirwan A; Cramard J; Faure AJ; Ralser M; Blanco E; Morey L; Sansó M; Palayret MGS; Lehner B; Di Croce L; Wutz A; Hendrich B; Klenerman D; Laue ED
    Nature; 2017 Apr; 544(7648):59-64. PubMed ID: 28289288
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Practical Analysis of Genome Contact Interaction Experiments.
    Carty MA; Elemento O
    Methods Mol Biol; 2016; 1418():177-89. PubMed ID: 27008015
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A (3D-Nuclear) Space Odyssey: Making Sense of Hi-C Maps.
    Mota-Gómez I; Lupiáñez DG
    Genes (Basel); 2019 May; 10(6):. PubMed ID: 31146487
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient Hi-C inversion facilitates chromatin folding mechanism discovery and structure prediction.
    Schuette G; Ding X; Zhang B
    bioRxiv; 2023 Jul; ():. PubMed ID: 36993500
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A global high-density chromatin interaction network reveals functional long-range and trans-chromosomal relationships.
    Lohia R; Fox N; Gillis J
    Genome Biol; 2022 Nov; 23(1):238. PubMed ID: 36352464
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessing stationary distributions derived from chromatin contact maps.
    Segal MR; Fletez-Brant K
    BMC Bioinformatics; 2020 Feb; 21(1):73. PubMed ID: 32093610
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using DNase Hi-C techniques to map global and local three-dimensional genome architecture at high resolution.
    Ma W; Ay F; Lee C; Gulsoy G; Deng X; Cook S; Hesson J; Cavanaugh C; Ware CB; Krumm A; Shendure J; Blau CA; Disteche CM; Noble WS; Duan Z
    Methods; 2018 Jun; 142():59-73. PubMed ID: 29382556
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Iteratively improving Hi-C experiments one step at a time.
    Golloshi R; Sanders JT; McCord RP
    Methods; 2018 Jun; 142():47-58. PubMed ID: 29723572
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hi-C 2.0: An optimized Hi-C procedure for high-resolution genome-wide mapping of chromosome conformation.
    Belaghzal H; Dekker J; Gibcus JH
    Methods; 2017 Jul; 123():56-65. PubMed ID: 28435001
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deciphering High-Resolution 3D Chromatin Organization via Capture Hi-C.
    Hauth A; Galupa R; Servant N; Villacorta L; Hauschulz K; van Bemmel JG; Loda A; Heard E
    J Vis Exp; 2022 Oct; (188):. PubMed ID: 36314814
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.