These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 38015443)

  • 41. Probing long-range interactions by extracting free energies from genome-wide chromosome conformation capture data.
    Saberi S; Farré P; Cuvier O; Emberly E
    BMC Bioinformatics; 2015 May; 16():171. PubMed ID: 26001583
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Connecting high-resolution 3D chromatin organization with epigenomics.
    Feng F; Yao Y; Wang XQD; Zhang X; Liu J
    Nat Commun; 2022 Apr; 13(1):2054. PubMed ID: 35440119
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Methods for the Analysis of Topologically Associating Domains (TADs).
    Zufferey M; Tavernari D; Ciriello G
    Methods Mol Biol; 2022; 2301():39-59. PubMed ID: 34415530
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tethered Chromosome Conformation Capture Sequencing in Triticeae: A Valuable Tool for Genome Assembly.
    Himmelbach A; Walde I; Mascher M; Stein N
    Bio Protoc; 2018 Aug; 8(15):e2955. PubMed ID: 34395764
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characteristic arrangement of nucleosomes is predictive of chromatin interactions at kilobase resolution.
    Zhang H; Li F; Jia Y; Xu B; Zhang Y; Li X; Zhang Z
    Nucleic Acids Res; 2017 Dec; 45(22):12739-12751. PubMed ID: 29036650
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of computational methods for 3D genome analysis at single-cell Hi-C level.
    Li X; An Z; Zhang Z
    Methods; 2020 Oct; 181-182():52-61. PubMed ID: 31445093
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterizing chromatin interactions of regulatory elements and nucleosome positions, using Hi-C, Micro-C, and promoter capture Micro-C.
    Lee BH; Wu Z; Rhie SK
    Epigenetics Chromatin; 2022 Dec; 15(1):41. PubMed ID: 36544209
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genome modeling: From chromatin fibers to genes.
    Portillo-Ledesma S; Li Z; Schlick T
    Curr Opin Struct Biol; 2023 Feb; 78():102506. PubMed ID: 36577295
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Predicting chromosomal compartments directly from the nucleotide sequence with DNA-DDA.
    Lainscsek X; Taher L
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37264486
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Methods for the Differential Analysis of Hi-C Data.
    Nicoletti C
    Methods Mol Biol; 2022; 2301():61-95. PubMed ID: 34415531
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A maximum likelihood algorithm for reconstructing 3D structures of human chromosomes from chromosomal contact data.
    Oluwadare O; Zhang Y; Cheng J
    BMC Genomics; 2018 Feb; 19(1):161. PubMed ID: 29471801
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Advantages of using graph databases to explore chromatin conformation capture experiments.
    D'Agostino D; Liò P; Aldinucci M; Merelli I
    BMC Bioinformatics; 2021 Apr; 22(Suppl 2):43. PubMed ID: 33902433
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Understanding 3D Genome Organization and Its Effect on Transcriptional Gene Regulation Under Environmental Stress in Plant: A Chromatin Perspective.
    Kumar S; Kaur S; Seem K; Kumar S; Mohapatra T
    Front Cell Dev Biol; 2021; 9():774719. PubMed ID: 34957106
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Application of Hi-C technology in three-dimensional genomics research and disease pathogenesis analysis.
    Wang SZ; Jiang F; Zhu DL; Yang TL; Guo Y
    Yi Chuan; 2023 Apr; 45(4):279-294. PubMed ID: 37077163
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Perspectives for the reconstruction of 3D chromatin conformation using single cell Hi-C data.
    Kos PI; Galitsyna AA; Ulianov SV; Gelfand MS; Razin SV; Chertovich AV
    PLoS Comput Biol; 2021 Nov; 17(11):e1009546. PubMed ID: 34793453
    [TBL] [Abstract][Full Text] [Related]  

  • 56. HiCORE: Hi-C Analysis for Identification of Core Chromatin Looping Regions with Higher Resolution.
    Lee H; Seo PJ
    Mol Cells; 2021 Dec; 44(12):883-892. PubMed ID: 34963105
    [TBL] [Abstract][Full Text] [Related]  

  • 57. HSA: integrating multi-track Hi-C data for genome-scale reconstruction of 3D chromatin structure.
    Zou C; Zhang Y; Ouyang Z
    Genome Biol; 2016 Mar; 17():40. PubMed ID: 26936376
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Micro-C Analysis Workflow Using Pairtools and Juicer.
    Sakata T
    Methods Mol Biol; 2025; 2856():63-70. PubMed ID: 39283446
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mapping the semi-nested community structure of 3D chromosome contact networks.
    Bernenko D; Lee SH; Stenberg P; Lizana L
    PLoS Comput Biol; 2023 Jul; 19(7):e1011185. PubMed ID: 37432974
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The genome organization of Neurospora crassa at high resolution uncovers principles of fungal chromosome topology.
    Rodriguez S; Ward A; Reckard AT; Shtanko Y; Hull-Crew C; Klocko AD
    G3 (Bethesda); 2022 May; 12(5):. PubMed ID: 35244156
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.