BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38015693)

  • 1. EAG-RS: A Novel Explainability-Guided ROI-Selection Framework for ASD Diagnosis via Inter-Regional Relation Learning.
    Jung W; Jeon E; Kang E; Suk HI
    IEEE Trans Med Imaging; 2024 Apr; 43(4):1400-1411. PubMed ID: 38015693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diagnosis of Autism Spectrum Disorders Using Multi-Level High-Order Functional Networks Derived From Resting-State Functional MRI.
    Zhao F; Zhang H; Rekik I; An Z; Shen D
    Front Hum Neurosci; 2018; 12():184. PubMed ID: 29867410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autism spectrum disorders detection based on multi-task transformer neural network.
    Gao L; Wang Z; Long Y; Zhang X; Su H; Yu Y; Hong J
    BMC Neurosci; 2024 Jun; 25(1):27. PubMed ID: 38872076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A unified framework for personalized regions selection and functional relation modeling for early MCI identification.
    Lee J; Ko W; Kang E; Suk HI;
    Neuroimage; 2021 Aug; 236():118048. PubMed ID: 33878379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-site clustering and nested feature extraction for identifying autism spectrum disorder with resting-state fMRI.
    Wang N; Yao D; Ma L; Liu M
    Med Image Anal; 2022 Jan; 75():102279. PubMed ID: 34731776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards.
    Plitt M; Barnes KA; Martin A
    Neuroimage Clin; 2015; 7():359-66. PubMed ID: 25685703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Explaining deep learning-based representations of resting state functional connectivity data: focusing on interpreting nonlinear patterns in autism spectrum disorder.
    Kim YG; Ravid O; Zheng X; Kim Y; Neria Y; Lee S; He X; Zhu X
    Front Psychiatry; 2024; 15():1397093. PubMed ID: 38832332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Learnable Counter-Condition Analysis Framework for Functional Connectivity-Based Neurological Disorder Diagnosis.
    Kang E; Heo DW; Lee J; Suk HI
    IEEE Trans Med Imaging; 2024 Apr; 43(4):1377-1387. PubMed ID: 38019623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diagnosis of Autism Spectrum Disorders in Young Children Based on Resting-State Functional Magnetic Resonance Imaging Data Using Convolutional Neural Networks.
    Aghdam MA; Sharifi A; Pedram MM
    J Digit Imaging; 2019 Dec; 32(6):899-918. PubMed ID: 30963340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-Scale Graph Representation Learning for Autism Identification With Functional MRI.
    Chu Y; Wang G; Cao L; Qiao L; Liu M
    Front Neuroinform; 2021; 15():802305. PubMed ID: 35095453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying Boys With Autism Spectrum Disorder Based on Whole-Brain Resting-State Interregional Functional Connections Using a Boruta-Based Support Vector Machine Approach.
    Zhao L; Sun YK; Xue SW; Luo H; Lu XD; Zhang LH
    Front Neuroinform; 2022; 16():761942. PubMed ID: 35273487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stratifying ASD and characterizing the functional connectivity of subtypes in resting-state fMRI.
    Ren P; Bi Q; Pang W; Wang M; Zhou Q; Ye X; Li L; Xiao L
    Behav Brain Res; 2023 Jul; 449():114458. PubMed ID: 37121277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-Class ASD Classification Based on Functional Connectivity and Functional Correlation Tensor via Multi-Source Domain Adaptation and Multi-View Sparse Representation.
    Wang J; Zhang L; Wang Q; Chen L; Shi J; Chen X; Li Z; Shen D
    IEEE Trans Med Imaging; 2020 Oct; 39(10):3137-3147. PubMed ID: 32305905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Autism Subtypes Based on Wavelet Coherence of BOLD FMRI Signals Using Convolutional Neural Network.
    Al-Hiyali MI; Yahya N; Faye I; Hussein AF
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constructing Multi-View High-Order Functional Connectivity Networks for Diagnosis of Autism Spectrum Disorder.
    Zhao F; Zhang X; Thung KH; Mao N; Lee SW; Shen D
    IEEE Trans Biomed Eng; 2022 Mar; 69(3):1237-1250. PubMed ID: 34705632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning to Fuse Multiple Brain Functional Networks for Automated Autism Identification.
    Zhang C; Ma Y; Qiao L; Zhang L; Liu M
    Biology (Basel); 2023 Jul; 12(7):. PubMed ID: 37508401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring high-order correlations with deep-broad learning for autism spectrum disorder diagnosis.
    Hao X; An Q; Li J; Min H; Guo Y; Yu M; Qin J
    Front Neurosci; 2022; 16():1046268. PubMed ID: 36483179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination of rs-fMRI and sMRI Data to Discriminate Autism Spectrum Disorders in Young Children Using Deep Belief Network.
    Akhavan Aghdam M; Sharifi A; Pedram MM
    J Digit Imaging; 2018 Dec; 31(6):895-903. PubMed ID: 29736781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-Scale Brain Functional Network Integration for Discrimination of Autism Using a 3-D Deep Learning Model.
    Yang M; Cao M; Chen Y; Chen Y; Fan G; Li C; Wang J; Liu T
    Front Hum Neurosci; 2021; 15():687288. PubMed ID: 34149385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constructing high-order functional networks based on hypergraph for diagnosis of autism spectrum disorders.
    Yang J; Wang F; Li Z; Yang Z; Dong X; Han Q
    Front Neurosci; 2023; 17():1257982. PubMed ID: 37719159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.