These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 3801578)

  • 1. Intracellular microelectrode measurements in small cells evaluated with the patch clamp technique.
    Ince C; van Bavel E; van Duijn B; Donkersloot K; Coremans A; Ypey DL; Verveen AA
    Biophys J; 1986 Dec; 50(6):1203-9. PubMed ID: 3801578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological properties of Dictyostelium derived from membrane potential measurements with microelectrodes.
    Van Duijn B; Ypey DL; Van der Molen LG
    J Membr Biol; 1988 Dec; 106(2):123-34. PubMed ID: 3225840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of the membrane potential of cultured macrophages from the fast potential transient upon microelectrode entry.
    Ince C; Ypey DL; Van Furth R; Verveen AA
    J Cell Biol; 1983 Mar; 96(3):796-801. PubMed ID: 6833384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular microelectrode membrane potential measurements in tobacco cell-suspension protoplasts and barley aleurone protoplasts: interpretation and artifacts.
    Van Duijn B; Heimovaara-Dijkstra S
    Biochim Biophys Acta; 1994 Jul; 1193(1):77-84. PubMed ID: 8038197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theory and operation of a single microelectrode voltage clamp.
    Finkel AS; Redman S
    J Neurosci Methods; 1984 Jun; 11(2):101-27. PubMed ID: 6482502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Further analysis of spontaneous membrane potential activity and the hyperpolarizing response to parathyroid hormone in osteoblastlike cells.
    Ferrier J; Ward-Kesthely A; Homble F; Ross S
    J Cell Physiol; 1987 Mar; 130(3):344-51. PubMed ID: 3031087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of conductance changes on patch clamp capacitance measurements using a lock-in amplifier and limitations of the phase tracking technique.
    Debus K; Hartmann J; Kilic G; Lindau M
    Biophys J; 1995 Dec; 69(6):2808-22. PubMed ID: 8599687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic device for microelectrode recordings in epithelial cells.
    Garcia-Diaz JF; Stump S; Armstrong WM
    Am J Physiol; 1984 Mar; 246(3 Pt 1):C339-46. PubMed ID: 6703048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low resting potentials in single isolated heart cells due to membrane damage by the recording microelectrode.
    Pelzer D; Trube G; Piper HM
    Pflugers Arch; 1984 Feb; 400(2):197-9. PubMed ID: 6718227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane potential measurements of unfertilized and fertilized Xenopus laevis eggs are affected by damage caused by the electrode.
    Peres A; Bernardini G; Negrini C
    Exp Cell Res; 1986 Jan; 162(1):159-68. PubMed ID: 3940227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-microelectrode voltage clamp of Xenopus oocytes: voltage errors and compensation for local current flow.
    Baumgartner W; Islas L; Sigworth FJ
    Biophys J; 1999 Oct; 77(4):1980-91. PubMed ID: 10512818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modalities of distortion of physiological voltage signals by patch-clamp amplifiers: a modeling study.
    Magistretti J; Mantegazza M; de Curtis M; Wanke E
    Biophys J; 1998 Feb; 74(2 Pt 1):831-42. PubMed ID: 9533695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate measurement of junctional conductance between electrically coupled cells with dual whole-cell voltage-clamp under conditions of high series resistance.
    Hartveit E; Veruki ML
    J Neurosci Methods; 2010 Mar; 187(1):13-25. PubMed ID: 20074587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion-selective microelectrodes: theory and technique.
    Armstrong WM; Garcia-Diaz JF
    Fed Proc; 1980 Sep; 39(11):2851-9. PubMed ID: 7409206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical properties of hydrated cation-selective glass membrane. A model of K+ and Na+ transport.
    Lee CO; Fozzard HA
    Biophys J; 1974 Jan; 14(1):46-68. PubMed ID: 4359745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The resting potential of mouse Leydig cells: role of an electrogenic Na+/K+ pump.
    del Corsso C; Varanda WA
    J Membr Biol; 2003 Jan; 191(2):123-31. PubMed ID: 12533779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A micro-electrode amplifier with an infinite resistance current source for intracellular measurements of membrane potential and resistance changes under current clamp.
    Muijser H
    Experientia; 1979 Jul; 35(7):912-3. PubMed ID: 477853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resting voltage measurements of the rabbit corneal endothelium using patch-current clamp techniques.
    Watsky MA; Rae JL
    Invest Ophthalmol Vis Sci; 1991 Jan; 32(1):106-11. PubMed ID: 1987091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volume changes and potential artifacts of epithelial cells of frog skin following impalement with microelectrodes filled with 3 m KCl.
    Nelson DJ; Ehrenfeld J; Lindemann B
    J Membr Biol; 1978; 40 Spec No():91-119. PubMed ID: 731680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of cell excision and microelectrode perforation on membrane resistance measurements of Nitella translucens.
    Blake IO
    Biochim Biophys Acta; 1979 Jun; 554(1):62-7. PubMed ID: 454605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.