These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38016024)

  • 1. Insight into the Contribution of the Electrolyte Additive LiBF
    Qiu J; Guo J; Li J; Wu Y; Fan Z; Ye H; Fang Z; Zhang Z; Zeng R
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 38016024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. B-/Si-containing electrolyte additive efficiently establish a stable interface for high-voltage LiCoO
    Lin X; Zeng F; Lin J; Zhang W; Zhou X; Quan L; Yang S; He J; Xing L; Li W
    J Colloid Interface Sci; 2023 Jul; 642():292-303. PubMed ID: 37004263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Visualized Cathode Electrolyte Interphase on LiCoO
    Lu W; Zhang J; Xu J; Wu X; Chen L
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):19313-19318. PubMed ID: 28497948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constructing a Low-Impedance Interface on a High-Voltage LiNi
    Li G; Liao Y; Li Z; Xu N; Lu Y; Lan G; Sun G; Li W
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37013-37026. PubMed ID: 32700895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanically and Thermally Stable Cathode Electrolyte Interphase Enables High-temperature, High-voltage Li||LiCoO
    Wu D; Zhu C; Wang H; Huang J; Jiang G; Yang Y; Yang G; Tang D; Ma J
    Angew Chem Int Ed Engl; 2024 Feb; 63(7):e202315608. PubMed ID: 38083796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constructing Robust Cathode/Electrolyte Interphase for Ultrastable 4.6 V LiCoO
    Ye B; Cai M; Xie M; Dong H; Dong W; Huang F
    ACS Appl Mater Interfaces; 2022 May; 14(17):19561-19568. PubMed ID: 35442616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous Interphase Optimizations on the Large-Area Anode and Cathode of High-Energy-Density Lithium-Ion Pouch Cells by a Multiple Additives Strategy.
    Zang XF; Li Z; Fang Y; Hong Y; Yang S; Peng Z; Sun S
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46084-46094. PubMed ID: 32955849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constructing Highly Li
    Bizuneh GG; Zhu C; Huang J; Wang H; Qi S; Wang Z; Wu D; Ma J
    Small Methods; 2023 Sep; 7(9):e2300079. PubMed ID: 37256271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of Low-Impedance and High-Passivated Interphase for Nickel-Rich Cathode by Low-Cost Boron-Containing Electrolyte Additive.
    Li G; Li Z; Cai Q; Yan C; Xing L; Li W
    ChemSusChem; 2022 Jun; 15(11):e202200543. PubMed ID: 35394701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-thin and Mechanically Stable LiCoO
    Liu P; Huang T; Xiao B; Zou L; Wang K; Wang K; Wang K; Yao X; Liu Y; Huang Z; Wang H; Liu M; Ren X; Ren X; Ouyang X; Liu J; Zhang Q; Hu J
    Small; 2024 Jul; 20(28):e2311520. PubMed ID: 38299465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interface stabilization via lithium bis(fluorosulfonyl)imide additive as a key for promoted performance of graphite‖LiCoO
    Pham HQ; Chung GJ; Han J; Hwang EH; Kwon YG; Song SW
    J Chem Phys; 2020 Mar; 152(9):094709. PubMed ID: 33480738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic Effect of Dual-Anion Additives Promotes the Fast Dynamics and High-Voltage Performance of Ni-Rich Lithium-Ion Batteries by Regulating the Electrode/Electrolyte Interface.
    Dai P; Kong X; Yang H; Kuang S; Zeng J; Zhao J
    ACS Appl Mater Interfaces; 2022 Sep; 14(35):39927-39938. PubMed ID: 36001325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Molecularly Engineered Cathode Lithium Compensation Agent for High Energy Density Batteries.
    Wu W; Wang A; Zhan Q; Hu Z; Tang W; Zhang L; Luo J
    Small; 2023 Jul; 19(28):e2301737. PubMed ID: 37191324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cooperative Shielding of Bi-Electrodes via In Situ Amorphous Electrode-Electrolyte Interphases for Practical High-Energy Lithium-Metal Batteries.
    Liang JY; Zhang XD; Zhang Y; Huang LB; Yan M; Shen ZZ; Wen R; Tang J; Wang F; Shi JL; Wan LJ; Guo YG
    J Am Chem Soc; 2021 Oct; 143(40):16768-16776. PubMed ID: 34607434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the Stability of High-Voltage Lithium Cobalt Oxide with a Multifunctional Electrolyte Additive: Interfacial Analyses.
    Liao XQ; Li F; Zhang CM; Yin ZL; Liu GC; Yu JG
    Nanomaterials (Basel); 2021 Feb; 11(3):. PubMed ID: 33671087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic Dual-Additive Electrolyte Enables Practical Lithium-Metal Batteries.
    Li S; Zhang W; Wu Q; Fan L; Wang X; Wang X; Shen Z; He Y; Lu Y
    Angew Chem Int Ed Engl; 2020 Aug; 59(35):14935-14941. PubMed ID: 32410377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing the Electrochemical Performance of a High-Voltage LiNi
    Tan C; Wang N; Pan Q; Li Y; Li Y; Ji Q; Fan X; Zheng F; Wang H; Li Q
    Chemistry; 2020 Sep; 26(53):12233-12241. PubMed ID: 32472722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lithium fluorosulfonate-induced low-resistance interphase boosting low-temperature performance of commercial graphite/LiFePO
    Zhang Z; Hu J; Hu Y; Wang H; Hu H
    J Colloid Interface Sci; 2024 Sep; 669():305-313. PubMed ID: 38718584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anion-enrichment interface enables high-voltage anode-free lithium metal batteries.
    Mao M; Ji X; Wang Q; Lin Z; Li M; Liu T; Wang C; Hu YS; Li H; Huang X; Chen L; Suo L
    Nat Commun; 2023 Feb; 14(1):1082. PubMed ID: 36841872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiated Lithium Salt Design for Multilayered PEO Electrolyte Enables a High-Voltage Solid-State Lithium Metal Battery.
    Wang C; Wang T; Wang L; Hu Z; Cui Z; Li J; Dong S; Zhou X; Cui G
    Adv Sci (Weinh); 2019 Nov; 6(22):1901036. PubMed ID: 31763139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.