These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38016256)

  • 1. Syngas-driven sewage sludge conversion to microbial protein through H
    Pelagalli V; Matassa S; Race M; Langone M; Papirio S; Lens PNL; Lazzazzara M; Frugis A; Petta L; Esposito G
    Water Res; 2024 Jan; 248():120698. PubMed ID: 38016256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of nitrogen supply on hydrogen-oxidizing bacterial enrichment to produce microbial protein: Comparing nitrogen fixation and ammonium assimilation.
    Wang H; Zhang L; Tian C; Fan S; Zheng D; Song Y; Gao P; Li D
    Bioresour Technol; 2024 Feb; 394():130199. PubMed ID: 38092074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enrichment of hydrogen-oxidizing bacteria with nitrate recovery as biofertilizers in the mixed culture.
    Zhang W; Niu Y; Li YX; Zhang F; Jianxiong Zeng R
    Bioresour Technol; 2020 Oct; 313():123645. PubMed ID: 32544804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enrichment of hydrogen-oxidizing bacteria using a hybrid biological-inorganic system.
    Feng X; He S; Sato T; Kondo T; Uema K; Sato K; Kobayashi H
    J Biosci Bioeng; 2023 Mar; 135(3):250-257. PubMed ID: 36650080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel process for volatile fatty acids production from syngas by integrating with mesophilic alkaline fermentation of waste activated sludge.
    Rao Y; Wan J; Liu Y; Angelidaki I; Zhang S; Zhang Y; Luo G
    Water Res; 2018 Aug; 139():372-380. PubMed ID: 29665509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of acetate productivity in a thermophilic (55 °C) hollow-fiber membrane biofilm reactor with mixed culture syngas (H
    Wang YQ; Yu SJ; Zhang F; Xia XY; Zeng RJ
    Appl Microbiol Biotechnol; 2017 Mar; 101(6):2619-2627. PubMed ID: 28110397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial Protein out of Thin Air: Fixation of Nitrogen Gas by an Autotrophic Hydrogen-Oxidizing Bacterial Enrichment.
    Hu X; Kerckhof FM; Ghesquière J; Bernaerts K; Boeckx P; Clauwaert P; Boon N
    Environ Sci Technol; 2020 Mar; 54(6):3609-3617. PubMed ID: 32125831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enriched hydrogen-oxidizing microbiomes show a high diversity of co-existing hydrogen-oxidizing bacteria.
    Ehsani E; Dumolin C; Arends JBA; Kerckhof FM; Hu X; Vandamme P; Boon N
    Appl Microbiol Biotechnol; 2019 Oct; 103(19):8241-8253. PubMed ID: 31482282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen-oxidizing bacteria and their applications in resource recovery and pollutant removal.
    Lin L; Huang H; Zhang X; Dong L; Chen Y
    Sci Total Environ; 2022 Aug; 835():155559. PubMed ID: 35483467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-syngas production with low concentrations of CO2 and CH4 from microwave-induced pyrolysis of wet and dried sewage sludge.
    Domínguez A; Fernández Y; Fidalgo B; Pis JJ; Menéndez JA
    Chemosphere; 2008 Jan; 70(3):397-403. PubMed ID: 17692361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon monoxide conversion and syngas biomethanation mediated by different microbial consortia.
    Li C; Zhu X; Angelidaki I
    Bioresour Technol; 2020 Oct; 314():123739. PubMed ID: 32615449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reforming sewage sludge pyrolysis volatile with Fe-embedded char: Minimization of liquid product yield.
    Yu G; Chen D; Arena U; Huang Z; Dai X
    Waste Manag; 2018 Mar; 73():464-475. PubMed ID: 28803146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From Biogas and Hydrogen to Microbial Protein Through Co-Cultivation of Methane and Hydrogen Oxidizing Bacteria.
    Kerckhof FM; Sakarika M; Van Giel M; Muys M; Vermeir P; De Vrieze J; Vlaeminck SE; Rabaey K; Boon N
    Front Bioeng Biotechnol; 2021; 9():733753. PubMed ID: 34527661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Tale of a Neglected Energy Source: Elevated Hydrogen Exposure Affects both Microbial Diversity and Function in Soil.
    Khdhiri M; Piché-Choquette S; Tremblay J; Tringe SG; Constant P
    Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enrichment of anaerobic syngas-converting bacteria from thermophilic bioreactor sludge.
    Alves JI; Stams AJ; Plugge CM; Alves MM; Sousa DZ
    FEMS Microbiol Ecol; 2013 Dec; 86(3):590-7. PubMed ID: 23899025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomethanation of Syngas Using Anaerobic Sludge: Shift in the Catabolic Routes with the CO Partial Pressure Increase.
    Sancho Navarro S; Cimpoia R; Bruant G; Guiot SR
    Front Microbiol; 2016; 7():1188. PubMed ID: 27536280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Syngas biomethanation: effect of biomass-gas ratio, syngas composition and pH buffer.
    Li C; Zhu X; Angelidaki I
    Bioresour Technol; 2021 Dec; 342():125997. PubMed ID: 34583116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen-rich gas production via fast pyrolysis of biophysical dried sludge: Effect of particle size and moisture content on product yields and syngas composition.
    Han R; Liu J; Zhao C; Li Y; Chen A
    Waste Manag Res; 2016 Jun; 34(6):572-7. PubMed ID: 27118735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomethanation of syngas at high CO concentration in a continuous mode.
    Li Y; Liu Y; Wang X; Luo S; Su D; Jiang H; Zhou H; Pan J; Feng L
    Bioresour Technol; 2022 Feb; 346():126407. PubMed ID: 34826564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.