These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38016453)

  • 1. Using oscillatory and aperiodic neural activity features for identifying idle state in SSVEP-based BCIs reduces false triggers.
    Wang R; Zhou T; Li Z; Zhao J; Li X
    J Neural Eng; 2023 Dec; 20(6):. PubMed ID: 38016453
    [No Abstract]   [Full Text] [Related]  

  • 2. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrimination between control and idle states in asynchronous SSVEP-based brain switches: a pseudo-key-based approach.
    Pan J; Li Y; Zhang R; Gu Z; Li F
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):435-43. PubMed ID: 23673460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognition of the idle state based on a novel IFB-OCN method for an asynchronous brain-computer interface.
    Zhang W; Zhou T; Zhao J; Ji B; Wu Z
    J Neurosci Methods; 2020 Jul; 341():108776. PubMed ID: 32479971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A two-step idle-state detection method for SSVEP BCI.
    Du J; Ke Y; Liu P; Liu W; Kong L; Wang N; Xu M; An X; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3095-3098. PubMed ID: 31946542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical feature fusion framework for frequency recognition in SSVEP-based BCIs.
    Zhang Y; Yin E; Li F; Zhang Y; Guo D; Yao D; Xu P
    Neural Netw; 2019 Nov; 119():1-9. PubMed ID: 31376634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural dynamics during repetitive visual stimulation.
    Tsoneva T; Garcia-Molina G; Desain P
    J Neural Eng; 2015 Dec; 12(6):066017. PubMed ID: 26479469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Objective evaluation of fatigue by EEG spectral analysis in steady-state visual evoked potential-based brain-computer interfaces.
    Cao T; Wan F; Wong CM; da Cruz JN; Hu Y
    Biomed Eng Online; 2014 Mar; 13(1):28. PubMed ID: 24621009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatio-temporal equalization multi-window algorithm for asynchronous SSVEP-based BCI.
    Yang C; Yan X; Wang Y; Chen Y; Zhang H; Gao X
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34237711
    [No Abstract]   [Full Text] [Related]  

  • 10. A Hybrid Method Fusing Frequency Recognition With Attention Detection to Enhance an Asynchronous Brain-Computer Interface.
    Zhao J; Shi Y; Liu W; Zhou T; Li Z; Li X
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2391-2398. PubMed ID: 37171927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces.
    Chang MH; Baek HJ; Lee SM; Park KS
    Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high-performance brain switch based on code-modulated visual evoked potentials.
    Zheng L; Pei W; Gao X; Zhang L; Wang Y
    J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 34996051
    [No Abstract]   [Full Text] [Related]  

  • 13. A comfortable steady state visual evoked potential stimulation paradigm using peripheral vision.
    Zhao X; Wang Z; Zhang M; Hu H
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33784640
    [No Abstract]   [Full Text] [Related]  

  • 14. Steady-State Visual Evoked Potential Classification Using Complex Valued Convolutional Neural Networks.
    Ikeda A; Washizawa Y
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A frequency recognition method based on multitaper spectral analysis and SNR estimation for SSVEP-based brain-computer interface.
    Chen Yang ; Xu Han ; Yijun Wang ; Xiaorong Gao
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1930-1933. PubMed ID: 29060270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Almost free of calibration for SSVEP-based brain-computer interfaces.
    Luo R; Xiao X; Chen E; Meng L; Jung TP; Xu M; Ming D
    J Neural Eng; 2023 Nov; 20(6):. PubMed ID: 37948768
    [No Abstract]   [Full Text] [Related]  

  • 17. Data Augmentation of SSVEPs Using Source Aliasing Matrix Estimation for Brain-Computer Interfaces.
    Luo R; Xu M; Zhou X; Xiao X; Jung TP; Ming D
    IEEE Trans Biomed Eng; 2023 Jun; 70(6):1775-1785. PubMed ID: 37015587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast detection of covert visuospatial attention using hybrid N2pc and SSVEP features.
    Xu M; Wang Y; Nakanishi M; Wang YT; Qi H; Jung TP; Ming D
    J Neural Eng; 2016 Dec; 13(6):066003. PubMed ID: 27705952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface.
    Chen X; Wang Y; Gao S; Jung TP; Gao X
    J Neural Eng; 2015 Aug; 12(4):046008. PubMed ID: 26035476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel training-free recognition method for SSVEP-based BCIs using dynamic window strategy.
    Chen Y; Yang C; Chen X; Wang Y; Gao X
    J Neural Eng; 2021 Mar; 18(3):. PubMed ID: 32380480
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.