BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 38016952)

  • 1. The ELAVL3/MYCN positive feedback loop provides a therapeutic target for neuroendocrine prostate cancer.
    Ji Y; Zhang W; Shen K; Su R; Liu X; Ma Z; Liu B; Hu C; Xue Y; Xin Z; Yang Y; Li A; Jiang Z; Jing N; Zhu HH; Dong L; Zhu Y; Dong B; Pan J; Wang Q; Xue W
    Nat Commun; 2023 Nov; 14(1):7794. PubMed ID: 38016952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting the MYCN-PARP-DNA Damage Response Pathway in Neuroendocrine Prostate Cancer.
    Zhang W; Liu B; Wu W; Li L; Broom BM; Basourakos SP; Korentzelos D; Luan Y; Wang J; Yang G; Park S; Azad AK; Cao X; Kim J; Corn PG; Logothetis CJ; Aparicio AM; Chinnaiyan AM; Navone N; Troncoso P; Thompson TC
    Clin Cancer Res; 2018 Feb; 24(3):696-707. PubMed ID: 29138344
    [No Abstract]   [Full Text] [Related]  

  • 3. Activated ALK Cooperates with N-Myc via Wnt/β-Catenin Signaling to Induce Neuroendocrine Prostate Cancer.
    Unno K; Chalmers ZR; Pamarthy S; Vatapalli R; Rodriguez Y; Lysy B; Mok H; Sagar V; Han H; Yoo YA; Ku SY; Beltran H; Zhao Y; Abdulkadir SA
    Cancer Res; 2021 Apr; 81(8):2157-2170. PubMed ID: 33637566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets.
    Beltran H; Rickman DS; Park K; Chae SS; Sboner A; MacDonald TY; Wang Y; Sheikh KL; Terry S; Tagawa ST; Dhir R; Nelson JB; de la Taille A; Allory Y; Gerstein MB; Perner S; Pienta KJ; Chinnaiyan AM; Wang Y; Collins CC; Gleave ME; Demichelis F; Nanus DM; Rubin MA
    Cancer Discov; 2011 Nov; 1(6):487-95. PubMed ID: 22389870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CHRM4/AKT/MYCN upregulates interferon alpha-17 in the tumor microenvironment to promote neuroendocrine differentiation of prostate cancer.
    Wen YC; Tram VTN; Chen WH; Li CH; Yeh HL; Thuy Dung PV; Jiang KC; Li HR; Huang J; Hsiao M; Chen WY; Liu YN
    Cell Death Dis; 2023 May; 14(5):304. PubMed ID: 37142586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting PKLR/MYCN/ROMO1 signaling suppresses neuroendocrine differentiation of castration-resistant prostate cancer.
    Chen WY; Thuy Dung PV; Yeh HL; Chen WH; Jiang KC; Li HR; Chen ZQ; Hsiao M; Huang J; Wen YC; Liu YN
    Redox Biol; 2023 Jun; 62():102686. PubMed ID: 36963289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-Myc Induces an EZH2-Mediated Transcriptional Program Driving Neuroendocrine Prostate Cancer.
    Dardenne E; Beltran H; Benelli M; Gayvert K; Berger A; Puca L; Cyrta J; Sboner A; Noorzad Z; MacDonald T; Cheung C; Yuen KS; Gao D; Chen Y; Eilers M; Mosquera JM; Robinson BD; Elemento O; Rubin MA; Demichelis F; Rickman DS
    Cancer Cell; 2016 Oct; 30(4):563-577. PubMed ID: 27728805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PARP Inhibition Suppresses GR-MYCN-CDK5-RB1-E2F1 Signaling and Neuroendocrine Differentiation in Castration-Resistant Prostate Cancer.
    Liu B; Li L; Yang G; Geng C; Luo Y; Wu W; Manyam GC; Korentzelos D; Park S; Tang Z; Wu C; Dong Z; Sigouros M; Sboner A; Beltran H; Chen Y; Corn PG; Tetzlaff MT; Troncoso P; Broom B; Thompson TC
    Clin Cancer Res; 2019 Nov; 25(22):6839-6851. PubMed ID: 31439587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MYCN Transforms Prostate Epithelium to Neuroendocrine Prostate Cancer.
    Cancer Discov; 2016 Jun; 6(6):OF19. PubMed ID: 27080339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concurrent AURKA and MYCN gene amplifications are harbingers of lethal treatment-related neuroendocrine prostate cancer.
    Mosquera JM; Beltran H; Park K; MacDonald TY; Robinson BD; Tagawa ST; Perner S; Bismar TA; Erbersdobler A; Dhir R; Nelson JB; Nanus DM; Rubin MA
    Neoplasia; 2013 Jan; 15(1):1-10. PubMed ID: 23358695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-Myc Drives Neuroendocrine Prostate Cancer Initiated from Human Prostate Epithelial Cells.
    Lee JK; Phillips JW; Smith BA; Park JW; Stoyanova T; McCaffrey EF; Baertsch R; Sokolov A; Meyerowitz JG; Mathis C; Cheng D; Stuart JM; Shokat KM; Gustafson WC; Huang J; Witte ON
    Cancer Cell; 2016 Apr; 29(4):536-547. PubMed ID: 27050099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MUC1-C regulates lineage plasticity driving progression to neuroendocrine prostate cancer.
    Yasumizu Y; Rajabi H; Jin C; Hata T; Pitroda S; Long MD; Hagiwara M; Li W; Hu Q; Liu S; Yamashita N; Fushimi A; Kui L; Samur M; Yamamoto M; Zhang Y; Zhang N; Hong D; Maeda T; Kosaka T; Wong KK; Oya M; Kufe D
    Nat Commun; 2020 Jan; 11(1):338. PubMed ID: 31953400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of the ALDH18A1-MYCN positive feedback loop attenuates
    Guo YF; Duan JJ; Wang J; Li L; Wang D; Liu XZ; Yang J; Zhang HR; Lv J; Yang YJ; Yang ZY; Cai J; Liao XM; Tang T; Huang TT; Wu F; Yang XY; Wen Q; Bian XW; Yu SC
    Sci Transl Med; 2020 Feb; 12(531):. PubMed ID: 32075946
    [No Abstract]   [Full Text] [Related]  

  • 14. Computer-aided drug discovery of Myc-Max inhibitors as potential therapeutics for prostate cancer.
    Carabet LA; Lallous N; Leblanc E; Ban F; Morin H; Lawn S; Ghaidi F; Lee J; Mills IG; Gleave ME; Rennie PS; Cherkasov A
    Eur J Med Chem; 2018 Dec; 160():108-119. PubMed ID: 30326371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined MYC Activation and Pten Loss Are Sufficient to Create Genomic Instability and Lethal Metastatic Prostate Cancer.
    Hubbard GK; Mutton LN; Khalili M; McMullin RP; Hicks JL; Bianchi-Frias D; Horn LA; Kulac I; Moubarek MS; Nelson PS; Yegnasubramanian S; De Marzo AM; Bieberich CJ
    Cancer Res; 2016 Jan; 76(2):283-92. PubMed ID: 26554830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-Myc-mediated epigenetic reprogramming drives lineage plasticity in advanced prostate cancer.
    Berger A; Brady NJ; Bareja R; Robinson B; Conteduca V; Augello MA; Puca L; Ahmed A; Dardenne E; Lu X; Hwang I; Bagadion AM; Sboner A; Elemento O; Paik J; Yu J; Barbieri CE; Dephoure N; Beltran H; Rickman DS
    J Clin Invest; 2019 Jul; 129(9):3924-3940. PubMed ID: 31260412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proliferation and Survival of Embryonic Sympathetic Neuroblasts by MYCN and Activated ALK Signaling.
    Kramer M; Ribeiro D; Arsenian-Henriksson M; Deller T; Rohrer H
    J Neurosci; 2016 Oct; 36(40):10425-10439. PubMed ID: 27707976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elavl3 regulates neuronal polarity through the alternative splicing of an embryo-specific exon in AnkyrinG.
    Ogawa Y; Yamaguchi J; Yano M; Uchiyama Y; Okano HJ
    Neurosci Res; 2018 Oct; 135():13-20. PubMed ID: 29614249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of VPC-70619, a Small-Molecule N-Myc Inhibitor as a Potential Therapy for Neuroendocrine Prostate Cancer.
    Ton AT; Foo J; Singh K; Lee J; Kalyta A; Morin H; Perez C; Ban F; Leblanc E; Lallous N; Cherkasov A
    Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Drug Repurposing Screen Identifies Fludarabine Phosphate as a Potential Therapeutic Agent for N-MYC Overexpressing Neuroendocrine Prostate Cancers.
    Elhasasna H; Khan R; Bhanumathy KK; Vizeacoumar FS; Walke P; Bautista M; Dahiya DK; Maranda V; Patel H; Balagopal A; Alli N; Krishnan A; Freywald A; Vizeacoumar FJ
    Cells; 2022 Jul; 11(14):. PubMed ID: 35883689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.