These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 38016976)

  • 1. Exploiting nonlinearities through geometric engineering to enhance the auxetic behaviour in re-entrant honeycomb metamaterials.
    Srivastava C; Bhola L; Mahesh V; Guruprasad PJ; Petrinic N; Scarpa F; Harursampath D; Ponnusami SA
    Sci Rep; 2023 Nov; 13(1):20915. PubMed ID: 38016976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composites with Re-Entrant Lattice: Effect of Filler on Auxetic Behaviour.
    Tashkinov M; Tarasova A; Vindokurov I; Silberschmidt VV
    Polymers (Basel); 2023 Oct; 15(20):. PubMed ID: 37896322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Idealized 3D Auxetic Mechanical Metamaterial: An Analytical, Numerical, and Experimental Study.
    Ghavidelnia N; Bodaghi M; Hedayati R
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33672483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytical relationships for 2D Re-entrant auxetic metamaterials: An application to 3D printing flexible implants.
    Hedayati R; Yousefi A; Dezaki ML; Bodaghi M
    J Mech Behav Biomed Mater; 2023 Jul; 143():105938. PubMed ID: 37263172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue performance of auxetic meta-biomaterials.
    Kolken HMA; Garcia AF; Du Plessis A; Rans C; Mirzaali MJ; Zadpoor AA
    Acta Biomater; 2021 May; 126():511-523. PubMed ID: 33711528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Compressive and Flexural Behaviour of Re-Entrant Auxetics: A Numerical Study.
    Gao D; Zhang J; Zhang C; You Y
    Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37569923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geometric Analysis of Three-Dimensional Woven Fabric with in-Plane Auxetic Behavior.
    Zeeshan M; Hu H; Etemadi E
    Polymers (Basel); 2023 Mar; 15(5):. PubMed ID: 36904567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical Properties of Auxetic Cellular Material Consisting of Re-Entrant Hexagonal Honeycombs.
    Zhang X; Yang D
    Materials (Basel); 2016 Nov; 9(11):. PubMed ID: 28774021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, molecular dynamics simulation, and investigation of the mechanical behavior of DNA origami nanotubes with auxetic and honeycomb structures.
    Mogheiseh M; Etemadi E; Hasanzadeh Ghasemi R
    J Biomol Struct Dyn; 2023; 41(24):14822-14831. PubMed ID: 36889931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Enhanced Three-Dimensional Auxetic Lattice Structure with Improved Property.
    Xue Y; Gao P; Zhou L; Han F
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32102288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Mechanical Properties and Parameter Dependency of Novel, Doubly Re-Entrant Auxetic Honeycomb Structures.
    Széles L; Horváth R; Cveticanin L
    Polymers (Basel); 2024 Sep; 16(17):. PubMed ID: 39274156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-Plane Compressive Responses of Non-Homogenous Re-Entrant Honeycombs Fabricated by Fused Deposition Modelling.
    Baroutaji A; Nikkhah H; Arjunan A; Pirmohammad S; Robinson J
    Micromachines (Basel); 2024 May; 15(6):. PubMed ID: 38930664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical performance of additively manufactured cobalt-chromium-molybdenum auxetic meta-biomaterial bone scaffolds.
    Wanniarachchi CT; Arjunan A; Baroutaji A; Singh M
    J Mech Behav Biomed Mater; 2022 Oct; 134():105409. PubMed ID: 36037704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Re-Entrant Honeycomb Auxetic Structure with Enhanced Directional Properties.
    Mustahsan F; Khan SZ; Zaidi AA; Alahmadi YH; Mahmoud ERI; Almohamadi H
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extremely Non-Auxetic Behavior of a Typical Auxetic Microstructure Due to Its Material Properties.
    Bilski M; Wojciechowski KW; Stręk T; Kędziora P; Grima-Cornish JN; Dudek MR
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation and Tailoring of Rotating Squares' and Rectangles' Auxetic Structure Behavior through Computational Simulations of 6082T6 Aluminum Alloy Structures.
    Elsamanty M; Elshokrofy H; Ibrahim A; Järvenpää A; Khedr M
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auxetic Kirigami Metamaterials upon Large Stretching.
    Du C; Wang Y; Kang Z
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):19190-19198. PubMed ID: 37026970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Modelling of Structures with Non-Intuitive Behaviour.
    Strek T; Jopek H; Idczak E; Wojciechowski KW
    Materials (Basel); 2017 Dec; 10(12):. PubMed ID: 29207571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Study of Auxetic Structures Made of Re-Entrant ("Bow-Tie") Cells.
    Plewa J; Płońska M; Feliksik K; Junak G
    Materials (Basel); 2024 Jun; 17(13):. PubMed ID: 38998144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical honeycomb auxetic metamaterials.
    Mousanezhad D; Babaee S; Ebrahimi H; Ghosh R; Hamouda AS; Bertoldi K; Vaziri A
    Sci Rep; 2015 Dec; 5():18306. PubMed ID: 26670417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.