BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 38016984)

  • 1. Xylose and shikimate transporters facilitates microbial consortium as a chassis for benzylisoquinoline alkaloid production.
    Gao M; Zhao Y; Yao Z; Su Q; Van Beek P; Shao Z
    Nat Commun; 2023 Nov; 14(1):7797. PubMed ID: 38016984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast.
    Trenchard IJ; Siddiqui MS; Thodey K; Smolke CD
    Metab Eng; 2015 Sep; 31():74-83. PubMed ID: 26166409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning novel sugar transporters from Scheffersomyces (Pichia) stipitis allowing D-xylose fermentation by recombinant Saccharomyces cerevisiae.
    de Sales BB; Scheid B; Gonçalves DL; Knychala MM; Matsushika A; Bon EP; Stambuk BU
    Biotechnol Lett; 2015 Oct; 37(10):1973-82. PubMed ID: 26087949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Innovating a Nonconventional Yeast Platform for Producing Shikimate as the Building Block of High-Value Aromatics.
    Gao M; Cao M; Suástegui M; Walker J; Rodriguez Quiroz N; Wu Y; Tribby D; Okerlund A; Stanley L; Shanks JV; Shao Z
    ACS Synth Biol; 2017 Jan; 6(1):29-38. PubMed ID: 27600996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae.
    Kim SJ; Seo SO; Park YC; Jin YS; Seo JH
    J Biotechnol; 2014 Dec; 192 Pt B():376-82. PubMed ID: 24480571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of CDT-1 and XYL1 expression for balanced co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae.
    Zha J; Li BZ; Shen MH; Hu ML; Song H; Yuan YJ
    PLoS One; 2013; 8(7):e68317. PubMed ID: 23844185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-situ muconic acid extraction reveals sugar consumption bottleneck in a xylose-utilizing Saccharomyces cerevisiae strain.
    Nicolaï T; Deparis Q; Foulquié-Moreno MR; Thevelein JM
    Microb Cell Fact; 2021 Jun; 20(1):114. PubMed ID: 34098954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic Engineering of Saccharomyces cerevisiae for Production of Shinorine, a Sunscreen Material, from Xylose.
    Park SH; Lee K; Jang JW; Hahn JS
    ACS Synth Biol; 2019 Feb; 8(2):346-357. PubMed ID: 30586497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peroxisome compartmentalization of a toxic enzyme improves alkaloid production.
    Grewal PS; Samson JA; Baker JJ; Choi B; Dueber JE
    Nat Chem Biol; 2021 Jan; 17(1):96-103. PubMed ID: 33046851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae.
    Young EM; Comer AD; Huang H; Alper HS
    Metab Eng; 2012 Jul; 14(4):401-11. PubMed ID: 22445945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computational workflow for the expansion of heterologous biosynthetic pathways to natural product derivatives.
    Hafner J; Payne J; MohammadiPeyhani H; Hatzimanikatis V; Smolke C
    Nat Commun; 2021 Mar; 12(1):1760. PubMed ID: 33741955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plug-and-Play Benzylisoquinoline Alkaloid Biosynthetic Gene Discovery in Engineered Yeast.
    Morris JS; Dastmalchi M; Li J; Chang L; Chen X; Hagel JM; Facchini PJ
    Methods Enzymol; 2016; 575():143-78. PubMed ID: 27417928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yeast factories for the production of aromatic compounds: from building blocks to plant secondary metabolites.
    Suástegui M; Shao Z
    J Ind Microbiol Biotechnol; 2016 Nov; 43(11):1611-1624. PubMed ID: 27581441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating strain dependency in the production of aromatic compounds in Saccharomyces cerevisiae.
    Suástegui M; Guo W; Feng X; Shao Z
    Biotechnol Bioeng; 2016 Dec; 113(12):2676-2685. PubMed ID: 27317047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Engineered Aro1 Protein Degradation Approach for Increased
    Pyne ME; Narcross L; Melgar M; Kevvai K; Mookerjee S; Leite GB; Martin VJJ
    Appl Environ Microbiol; 2018 Sep; 84(17):. PubMed ID: 29934332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathway engineering for the production of heterologous aromatic chemicals and their derivatives in Saccharomyces cerevisiae: bioconversion from glucose.
    Gottardi M; Reifenrath M; Boles E; Tripp J
    FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28582489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation and metabolic engineering strategies for permeases of Saccharomyces cerevisiae.
    Zhang P; Chen Q; Fu G; Xia L; Hu X
    World J Microbiol Biotechnol; 2019 Jul; 35(7):112. PubMed ID: 31286266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative global metabolite profiling of xylose-fermenting Saccharomyces cerevisiae SR8 and Scheffersomyces stipitis.
    Shin M; Kim JW; Ye S; Kim S; Jeong D; Lee DY; Kim JN; Jin YS; Kim KH; Kim SR
    Appl Microbiol Biotechnol; 2019 Jul; 103(13):5435-5446. PubMed ID: 31001747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of yeast-based production of medicinal protoberberine alkaloids.
    Galanie S; Smolke CD
    Microb Cell Fact; 2015 Sep; 14():144. PubMed ID: 26376732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstituting Plant Secondary Metabolism in Saccharomyces cerevisiae for Production of High-Value Benzylisoquinoline Alkaloids.
    Pyne ME; Narcross L; Fossati E; Bourgeois L; Burton E; Gold ND; Martin VJ
    Methods Enzymol; 2016; 575():195-224. PubMed ID: 27417930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.