These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38017080)

  • 1. A time independent least squares algorithm for parameter identification of Turing patterns in reaction-diffusion systems.
    Chang L; Wang X; Sun G; Wang Z; Jin Z
    J Math Biol; 2023 Nov; 88(1):5. PubMed ID: 38017080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian Parameter Identification for Turing Systems on Stationary and Evolving Domains.
    Campillo-Funollet E; Venkataraman C; Madzvamuse A
    Bull Math Biol; 2019 Jan; 81(1):81-104. PubMed ID: 30311137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Instability of turing patterns in reaction-diffusion-ODE systems.
    Marciniak-Czochra A; Karch G; Suzuki K
    J Math Biol; 2017 Feb; 74(3):583-618. PubMed ID: 27305913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turing pattern formation in fractional activator-inhibitor systems.
    Henry BI; Langlands TA; Wearne SL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026101. PubMed ID: 16196638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stochastic Turing patterns: analysis of compartment-based approaches.
    Cao Y; Erban R
    Bull Math Biol; 2014 Dec; 76(12):3051-69. PubMed ID: 25421150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal control of networked reaction-diffusion systems.
    Gao S; Chang L; Romić I; Wang Z; Jusup M; Holme P
    J R Soc Interface; 2022 Mar; 19(188):20210739. PubMed ID: 35259961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing Stationary Reaction-Diffusion Patterns in pH Self-Activated Systems.
    Horváth J; Szalai I; De Kepper P
    Acc Chem Res; 2018 Dec; 51(12):3183-3190. PubMed ID: 30412377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning system parameters from turing patterns.
    Schnörr D; Schnörr C
    Mach Learn; 2023; 112(9):3151-3190. PubMed ID: 37575882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling biochemical spatial patterns: Machine learning approaches to the inverse problem of stationary Turing patterns.
    Matas-Gil A; Endres RG
    iScience; 2024 Jun; 27(6):109822. PubMed ID: 38827409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graph-theoretic conditions for zero-eigenvalue Turing instability in general chemical reaction networks.
    Mincheva M; Craciun G
    Math Biosci Eng; 2013 Aug; 10(4):1207-26. PubMed ID: 23906208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear effects on Turing patterns: time oscillations and chaos.
    Aragón JL; Barrio RA; Woolley TE; Baker RE; Maini PK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026201. PubMed ID: 23005839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Square Turing patterns in reaction-diffusion systems with coupled layers.
    Li J; Wang H; Ouyang Q
    Chaos; 2014 Jun; 24(2):023115. PubMed ID: 24985429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free energy dissipation enhances spatial accuracy and robustness of self-positioned Turing pattern in small biochemical systems.
    Zhang D; Zhang C; Ouyang Q; Tu Y
    J R Soc Interface; 2023 Jul; 20(204):20230276. PubMed ID: 37403484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel Aspects in Pattern Formation Arise from Coupling Turing Reaction-Diffusion and Chemotaxis.
    Fraga Delfino Kunz C; Gerisch A; Glover J; Headon D; Painter KJ; Matthäus F
    Bull Math Biol; 2023 Dec; 86(1):4. PubMed ID: 38038776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The design principles of discrete turing patterning systems.
    Leyshon T; Tonello E; Schnoerr D; Siebert H; Stumpf MPH
    J Theor Biol; 2021 Dec; 531():110901. PubMed ID: 34530030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical approach for parameter identification by Turing patterns.
    Kazarnikov A; Haario H
    J Theor Biol; 2020 Sep; 501():110319. PubMed ID: 32416093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Turing Instability and Colony Formation in Spatially Extended Rosenzweig-MacArthur Predator-Prey Models with Allochthonous Resources.
    Zhou Z; Van Gorder RA
    Bull Math Biol; 2019 Dec; 81(12):5009-5053. PubMed ID: 31595381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pattern formation from spatially heterogeneous reaction-diffusion systems.
    Van Gorder RA
    Philos Trans A Math Phys Eng Sci; 2021 Dec; 379(2213):20210001. PubMed ID: 34743604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Widening the criteria for emergence of Turing patterns.
    Kuznetsov M; Polezhaev A
    Chaos; 2020 Mar; 30(3):033106. PubMed ID: 32237770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluctuation-driven Turing patterns.
    Butler T; Goldenfeld N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011112. PubMed ID: 21867118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.