These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 38017113)
1. A novel RF-CEEMD-LSTM model for predicting water pollution. Ruan J; Cui Y; Song Y; Mao Y Sci Rep; 2023 Nov; 13(1):20901. PubMed ID: 38017113 [TBL] [Abstract][Full Text] [Related]
2. Integration of complete ensemble empirical mode decomposition with deep long short-term memory model for particulate matter concentration prediction. Fu M; Le C; Fan T; Prakapovich R; Manko D; Dmytrenko O; Lande D; Shahid S; Yaseen ZM Environ Sci Pollut Res Int; 2021 Dec; 28(45):64818-64829. PubMed ID: 34318419 [TBL] [Abstract][Full Text] [Related]
3. A combined monthly precipitation prediction method based on CEEMD and improved LSTM. Jiang X PLoS One; 2023; 18(7):e0288211. PubMed ID: 37440489 [TBL] [Abstract][Full Text] [Related]
4. Combined model of air quality index forecasting based on the combination of complementary empirical mode decomposition and sequence reconstruction. Wang W; Tang Q Environ Pollut; 2023 Jan; 316(Pt 2):120628. PubMed ID: 36370980 [TBL] [Abstract][Full Text] [Related]
5. Water quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validation. Khullar S; Singh N Environ Sci Pollut Res Int; 2022 Feb; 29(9):12875-12889. PubMed ID: 33988840 [TBL] [Abstract][Full Text] [Related]
6. A novel multivariate time series prediction of crucial water quality parameters with Long Short-Term Memory (LSTM) networks. Gao Z; Chen J; Wang G; Ren S; Fang L; Yinglan A; Wang Q J Contam Hydrol; 2023 Nov; 259():104262. PubMed ID: 37944201 [TBL] [Abstract][Full Text] [Related]
7. A hybrid model for tuberculosis forecasting based on empirical mode decomposition in China. Zhao R; Liu J; Zhao Z; Zhai M; Ren H; Wang X; Li Y; Cui Y; Qiao Y; Ren J; Chen L; Qiu L BMC Infect Dis; 2023 Oct; 23(1):665. PubMed ID: 37805543 [TBL] [Abstract][Full Text] [Related]
8. Prediction of suspended sediment concentration in the lower Yellow River in China based on the coupled CEEMD-NAR model. Zhang X; Zheng Z Environ Sci Pollut Res Int; 2023 Mar; 30(11):30960-30971. PubMed ID: 36441324 [TBL] [Abstract][Full Text] [Related]
9. An AQI decomposition ensemble model based on SSA-LSTM using improved AMSSA-VMD decomposition reconstruction technique. Wang K; Fan X; Yang X; Zhou Z Environ Res; 2023 Sep; 232():116365. PubMed ID: 37301497 [TBL] [Abstract][Full Text] [Related]
10. Predicting mine water inflow volumes using a decomposition-optimization algorithm-machine learning approach. Bian J; Hou T; Ren D; Lin C; Qiao X; Ma X; Ma J; Wang Y; Wang J; Liang X Sci Rep; 2024 Aug; 14(1):17777. PubMed ID: 39090145 [TBL] [Abstract][Full Text] [Related]
11. Air quality prediction model based on mRMR-RF feature selection and ISSA-LSTM. Wu H; Yang T; Li H; Zhou Z Sci Rep; 2023 Aug; 13(1):12825. PubMed ID: 37550459 [TBL] [Abstract][Full Text] [Related]
12. Using Complementary Ensemble Empirical Mode Decomposition and Gated Recurrent Unit to Predict Landslide Displacements in Dam Reservoir. Yang B; Xiao T; Wang L; Huang W Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214220 [TBL] [Abstract][Full Text] [Related]
13. A coupled CEEMD-BiLSTM model for regional monthly temperature prediction. Zhang X; Xiao Y; Zhu G; Shi J Environ Monit Assess; 2023 Feb; 195(3):379. PubMed ID: 36757488 [TBL] [Abstract][Full Text] [Related]
14. The changes prediction on terrestrial water storage in typical regions of China based on neural networks and satellite gravity data. Lu S; Li W; Yao G; Zhong Y; Bao L; Wang Z; Bi J; Zhu C; Guo Q Sci Rep; 2024 Jul; 14(1):16855. PubMed ID: 39039111 [TBL] [Abstract][Full Text] [Related]
15. Temperature Prediction of Seasonal Frozen Subgrades Based on CEEMDAN-LSTM Hybrid Model. Chen L; Liu X; Zeng C; He X; Chen F; Zhu B Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957299 [TBL] [Abstract][Full Text] [Related]
16. Industrial water consumption forecasting based on combined CEEMD-ARIMA model for Henan province, central chain: A case study. Zhang X; Zhao D; Wang T; Wu X Environ Monit Assess; 2022 Jun; 194(7):471. PubMed ID: 35652955 [TBL] [Abstract][Full Text] [Related]
17. CEEMDAN-IPSO-LSTM: A Novel Model for Short-Term Passenger Flow Prediction in Urban Rail Transit Systems. Zeng L; Li Z; Yang J; Xu X Int J Environ Res Public Health; 2022 Dec; 19(24):. PubMed ID: 36554314 [TBL] [Abstract][Full Text] [Related]
18. A Hybrid Model for Coronavirus Disease 2019 Forecasting Based on Ensemble Empirical Mode Decomposition and Deep Learning. Liu S; Wan Y; Yang W; Tan A; Jian J; Lei X Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612939 [TBL] [Abstract][Full Text] [Related]
19. Prediction of Blood Glucose Concentration Based on CEEMD and Improved Particle Swarm Optimization LSSVM. Ping G; Lei Y Crit Rev Biomed Eng; 2021; 49(2):9-19. PubMed ID: 34936313 [TBL] [Abstract][Full Text] [Related]
20. Artificial Intelligence based accurately load forecasting system to forecast short and medium-term load demands. Butt FM; Hussain L; Mahmood A; Lone KJ Math Biosci Eng; 2020 Dec; 18(1):400-425. PubMed ID: 33525099 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]