BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 38017261)

  • 1. Adaptive laboratory evolution under acetic acid stress enhances the multistress tolerance and ethanol production efficiency of Pichia kudriavzevii from lignocellulosic biomass.
    Dolpatcha S; Phong HX; Thanonkeo S; Klanrit P; Yamada M; Thanonkeo P
    Sci Rep; 2023 Nov; 13(1):21000. PubMed ID: 38017261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethanol production from dilute-acid steam exploded lignocellulosic feedstocks using an isolated multistress-tolerant Pichia kudriavzevii strain.
    Yuan SF; Guo GL; Hwang WS
    Microb Biotechnol; 2017 Nov; 10(6):1581-1590. PubMed ID: 28474425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potential of multistress tolerant yeast, Saccharomycodes ludwigii, for second-generation bioethanol production.
    Pilap W; Thanonkeo S; Klanrit P; Thanonkeo P
    Sci Rep; 2022 Dec; 12(1):22062. PubMed ID: 36543886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethanol fermentation from non-detoxified lignocellulose hydrolysate by a multi-stress tolerant yeast Candida glycerinogenes mutant.
    Zhao M; Shi D; Lu X; Zong H; Zhuge B; Ji H
    Bioresour Technol; 2019 Feb; 273():634-640. PubMed ID: 30502643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors.
    Martín C; Marcet M; Almazán O; Jönsson LJ
    Bioresour Technol; 2007 Jul; 98(9):1767-73. PubMed ID: 16934451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural.
    Fujitomi K; Sanda T; Hasunuma T; Kondo A
    Bioresour Technol; 2012 May; 111():161-6. PubMed ID: 22357292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of hfq and sigE on the tolerance of Zymomonas mobilis ZM4 to furfural and acetic acid stresses.
    Nouri H; Moghimi H; Marashi SA; Elahi E
    PLoS One; 2020; 15(10):e0240330. PubMed ID: 33035245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of various inhibitory substances and immobilization on ethanol production efficiency of a thermotolerant
    Ndubuisi IA; Qin Q; Liao G; Wang B; Moneke AN; Ogbonna JC; Jin C; Fang W
    Biotechnol Biofuels; 2020; 13():91. PubMed ID: 32477425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production.
    Sasano Y; Watanabe D; Ukibe K; Inai T; Ohtsu I; Shimoi H; Takagi H
    J Biosci Bioeng; 2012 Apr; 113(4):451-5. PubMed ID: 22178024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving Acetic Acid and Furfural Resistance of Xylose-Fermenting Saccharomyces cerevisiae Strains by Regulating Novel Transcription Factors Revealed via Comparative Transcriptomic Analysis.
    Li B; Wang L; Wu YJ; Xia ZY; Yang BX; Tang YQ
    Appl Environ Microbiol; 2021 Apr; 87(10):. PubMed ID: 33712428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xylose consumption and ethanol production by Pichia guilliermondii and Candida oleophila in the presence of furans, phenolic compounds, and organic acids commonly produced during the pre-treatment of plant biomass.
    da Silva RR; Zaiter MA; Boscolo M; da Silva R; Gomes E
    Braz J Microbiol; 2023 Jun; 54(2):753-759. PubMed ID: 36826705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of multiple inhibitor tolerant yeast via adaptive laboratory evolution for sustainable bioethanol production.
    Hemansi ; Himanshu ; Patel AK; Saini JK; Singhania RR
    Bioresour Technol; 2022 Jan; 344(Pt B):126247. PubMed ID: 34740795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving furfural tolerance in a xylose-fermenting yeast Spathaspora passalidarum CMUWF1-2 via adaptive laboratory evolution.
    Saengphing T; Sattayawat P; Kalawil T; Suwannarach N; Kumla J; Yamada M; Panbangred W; Rodrussamee N
    Microb Cell Fact; 2024 Mar; 23(1):80. PubMed ID: 38481222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First- and second-generation integrated process for bioethanol production: Fermentation of molasses diluted with hemicellulose hydrolysate by recombinant Saccharomyces cerevisiae.
    de Oliveira Pereira I; Dos Santos ÂA; Guimarães NC; Lima CS; Zanella E; Matsushika A; Rabelo SC; Stambuk BU; Ienczak JL
    Biotechnol Bioeng; 2024 Apr; 121(4):1314-1324. PubMed ID: 38178588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments.
    Choudhary J; Singh S; Nain L
    J Biosci Bioeng; 2017 Mar; 123(3):342-346. PubMed ID: 27856231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the fermentability of enzymatic hydrolyzates of sugarcane bagasse pretreated by steam explosion using different impregnating agents.
    Martín C; Galbe M; Nilvebrant NO; Jönsson LJ
    Appl Biochem Biotechnol; 2002; 98-100():699-716. PubMed ID: 12018294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of stress tolerance of Pichia kudriavzevii for high gravity bioethanol production from steam-exploded wheat straw hydrolysate.
    Hoppert L; Kölling R; Einfalt D
    Bioresour Technol; 2022 Nov; 364():128079. PubMed ID: 36220531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Improvement of inhibitors tolerance of Saccharomyces cerevisiae by overexpressing of long chain sphingoid kinases encoding gene LCB4].
    He Y; Zi L; Zhang B; Xu J; Wang D; Bai F
    Sheng Wu Gong Cheng Xue Bao; 2018 Jun; 34(6):906-915. PubMed ID: 29943536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Industrial robust yeast isolates with great potential for fermentation of lignocellulosic biomass.
    Pereira FB; Romaní A; Ruiz HA; Teixeira JA; Domingues L
    Bioresour Technol; 2014 Jun; 161():192-9. PubMed ID: 24704884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential effects of major inhibitory compounds from sugarcane-based lignocellulosic hydrolysates on the physiology of yeast strains and lactic acid bacteria.
    Cola P; Procópio DP; Alves ATC; Carnevalli LR; Sampaio IV; da Costa BLV; Basso TO
    Biotechnol Lett; 2020 Apr; 42(4):571-582. PubMed ID: 31974646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.