These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 38017414)
1. Deep learning model for measuring the sagittal Cobb angle on cervical spine computed tomography. Wang C; Ni M; Tian S; Ouyang H; Liu X; Fan L; Dong P; Jiang L; Lang N; Yuan H BMC Med Imaging; 2023 Nov; 23(1):196. PubMed ID: 38017414 [TBL] [Abstract][Full Text] [Related]
2. [Analysis of cervical sagittal parameters on MRI in patients with cervical spondylotic myelopathy]. Zhang L; Cheng Z; Cui Z; Ren Z; Peng B; Zhang X Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2017 Apr; 31(4):451-454. PubMed ID: 29798611 [TBL] [Abstract][Full Text] [Related]
3. Sagittal intervertebral rotational motion: a deep learning-based measurement on flexion-neutral-extension cervical lateral radiographs. Yan Y; Zhang X; Meng Y; Shen Q; He L; Cheng G; Gong X BMC Musculoskelet Disord; 2022 Nov; 23(1):967. PubMed ID: 36348426 [TBL] [Abstract][Full Text] [Related]
4. Deep learning algorithm for automatically measuring Cobb angle in patients with idiopathic scoliosis. Wang MX; Kim JK; Choi JW; Park D; Chang MC Eur Spine J; 2024 Nov; 33(11):4155-4163. PubMed ID: 38367024 [TBL] [Abstract][Full Text] [Related]
5. A deep learning framework for vertebral morphometry and Cobb angle measurement with external validation. Alukaev D; Kiselev S; Mustafaev T; Ainur A; Ibragimov B; Vrtovec T Eur Spine J; 2022 Aug; 31(8):2115-2124. PubMed ID: 35596800 [TBL] [Abstract][Full Text] [Related]
6. Comparison of manual versus automated measurement of Cobb angle in idiopathic scoliosis based on a deep learning keypoint detection technology. Sun Y; Xing Y; Zhao Z; Meng X; Xu G; Hai Y Eur Spine J; 2022 Aug; 31(8):1969-1978. PubMed ID: 34716822 [TBL] [Abstract][Full Text] [Related]
7. Clinical Application of Automatic Assessment of Scoliosis Cobb Angle Based on Deep Learning. Ni L; Zhang Z; Zou L; Wang J; Guo L; Qian W; Xu L; Xu K; Zeng Y Curr Med Imaging; 2024; 20():e15734056278130. PubMed ID: 38415463 [TBL] [Abstract][Full Text] [Related]
8. Correlation between C7-T1 Intervertebral Foramen Area and Sagittal Parameters in Patients with Cervical Spondylotic Myelopathy. Zhang L; Cui Z; Yuan C; Zhang X; Ren Z; Wang W; Xia P; Zhu R Orthop Surg; 2022 Nov; 14(11):3003-3008. PubMed ID: 36120819 [TBL] [Abstract][Full Text] [Related]
9. Débridement and Reconstruction Improve Postoperative Sagittal Alignment in Kyphotic Cervical Spinal Tuberculosis. Pan Z; Luo J; Yu L; Chen Y; Zhong J; Li Z; Zeng Z; Duan P; Ha Y; Cao K Clin Orthop Relat Res; 2017 Aug; 475(8):2084-2091. PubMed ID: 28265884 [TBL] [Abstract][Full Text] [Related]
10. Feasibility of automatic measurements of hip joints based on pelvic radiography and a deep learning algorithm. Yang W; Ye Q; Ming S; Hu X; Jiang Z; Shen Q; He L; Gong X Eur J Radiol; 2020 Nov; 132():109303. PubMed ID: 33017773 [TBL] [Abstract][Full Text] [Related]
11. Cervical sagittal alignment in adolescent idiopathic scoliosis patients (Lenke type 1-6). Wang L; Liu X J Orthop Sci; 2017 Mar; 22(2):254-259. PubMed ID: 28025024 [TBL] [Abstract][Full Text] [Related]
12. The Difference of Sagittal Correction of Adult Subaxial Cervical Spine Surgery According to Age: A Retrospective Study. Wu J; Guo R; Yang C; Yan H; Wang Z; Chen Z; Peng X; Zhang D; Jiang X; Zhao Q; Li B; Hu X; Gao L Orthop Surg; 2022 Aug; 14(8):1790-1798. PubMed ID: 35819084 [TBL] [Abstract][Full Text] [Related]
13. [Development and validation of an automatic diagnostic tool for lumbar stability based on deep learning]. Hu H; Wang X; Yang H; Zhang J; Li K; Zeng J Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2023 Jan; 37(1):81-90. PubMed ID: 36708120 [TBL] [Abstract][Full Text] [Related]
14. Application of TVD-Net for sagittal alignment and instability measurements in cervical spine radiographs. Xiao Q; Chen Y; Wang J; Zang F; Wang Y; Zheng G; Yang K; Zhang R; Hu B; Chen H Med Phys; 2023 Jul; 50(7):4182-4196. PubMed ID: 37162252 [TBL] [Abstract][Full Text] [Related]
15. Validity and reliability of a novel iPhone method to rapidly measure cervical sagittal parameters. Zhang J; Zhang C; Zhong W; Zhao Z; Han F; Han Z; Zhang H; Huang T; Luo X Sci Rep; 2022 Nov; 12(1):19579. PubMed ID: 36380107 [TBL] [Abstract][Full Text] [Related]
16. Comparison of spinal curvature parameters as determined by the ZEBRIS spine examination method and the Cobb method in children with scoliosis. Takács M; Orlovits Z; Jáger B; Kiss RM PLoS One; 2018; 13(7):e0200245. PubMed ID: 29985957 [TBL] [Abstract][Full Text] [Related]
17. The Sagittal Balance of the Cervical Spine: Radiographic Analysis of Interdependence between the Occipitocervical and Spinopelvic Alignment. Alijani B; Rasoulian J Asian Spine J; 2020 Jun; 14(3):287-297. PubMed ID: 31992027 [TBL] [Abstract][Full Text] [Related]
18. Influence of extending expansive open-door laminoplasty to C1 and C2 on cervical sagittal parameters. Wang WX; Zhao YB; Lu XD; Zhao XF; Jin YZ; Chen XW; Fan YX; Wang XN; Zhou RT; Zhao B BMC Musculoskelet Disord; 2020 Feb; 21(1):75. PubMed ID: 32024507 [TBL] [Abstract][Full Text] [Related]
19. Performance evaluation of a deep learning-based cascaded HRNet model for automatic measurement of X-ray imaging parameters of lumbar sagittal curvature. Wu Y; Chen X; Dong F; He L; Cheng G; Zheng Y; Ma C; Yao H; Zhou S Eur Spine J; 2024 Nov; 33(11):4104-4118. PubMed ID: 37787781 [TBL] [Abstract][Full Text] [Related]
20. A novel rapid measurement method of cervical sagittal parameters based on the integrated inclinometer of a smartphone: a validity and reliability study. Huang T; Zhang C; Han Z; Zhong W; Zhao Z; Zhu Y; Luo X; Zhang J Ann Med; 2023; 55(2):2289590. PubMed ID: 38065682 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]