BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 3801764)

  • 1. The role of endothelial and non-endothelial prostaglandins in the relaxation of isolated blood vessels of the rabbit induced by acetylcholine and bradykinin.
    Förstermann U; Hertting G; Neufang B
    Br J Pharmacol; 1986 Mar; 87(3):521-32. PubMed ID: 3801764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The importance of endogenous prostaglandins other than prostacyclin, for the modulation of contractility of some rabbit blood vessels.
    Förstermann U; Hertting G; Neufang B
    Br J Pharmacol; 1984 Apr; 81(4):623-30. PubMed ID: 6426568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of volatile anesthetics on acetylcholine-induced relaxation in the rabbit mesenteric resistance artery.
    Akata T; Nakashima M; Kodama K; Boyle WA; Takahashi S
    Anesthesiology; 1995 Jan; 82(1):188-204. PubMed ID: 7832300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneity in mechanisms of bradykinin action in canine isolated blood vessels.
    Toda N; Bian K; Akiba T; Okamura T
    Eur J Pharmacol; 1987 Mar; 135(3):321-9. PubMed ID: 3556199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NO/PGI2-independent vasorelaxation and the cytochrome P450 pathway in rabbit carotid artery.
    Dong H; Waldron GJ; Galipeau D; Cole WC; Triggle CR
    Br J Pharmacol; 1997 Feb; 120(4):695-701. PubMed ID: 9051310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide, prostanoid and non-NO, non-prostanoid involvement in acetylcholine relaxation of isolated human small arteries.
    Buus NH; Simonsen U; Pilegaard HK; Mulvany MJ
    Br J Pharmacol; 2000 Jan; 129(1):184-92. PubMed ID: 10694219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries.
    Prieto D; Simonsen U; Hernández M; García-Sacristán A
    Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of endothelial cells in relaxation of isolated arteries by bradykinin.
    Cherry PD; Furchgott RF; Zawadzki JV; Jothianandan D
    Proc Natl Acad Sci U S A; 1982 Mar; 79(6):2106-10. PubMed ID: 6952258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacological modulation of bradykinin-, acetylcholine- and calcium ionophore A23187-induced relaxation of rabbit pulmonary arterial segments.
    Chand N; Mahoney TP; Diamantis W; Sofia RD
    Eur J Pharmacol; 1987 Jun; 137(2-3):173-7. PubMed ID: 3111870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of prostaglandin I2 synthesized in the endothelium and in the smooth muscle on mechanical properties of the canine thoracic aorta.
    Domae M; Kuriyama H
    Naunyn Schmiedebergs Arch Pharmacol; 1986 Jul; 333(3):294-302. PubMed ID: 3093899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of calcium-activated and voltage-gated delayed rectifier potassium channels in endothelium-dependent vasorelaxation of the rabbit middle cerebral artery.
    Dong H; Waldron GJ; Cole WC; Triggle CR
    Br J Pharmacol; 1998 Mar; 123(5):821-32. PubMed ID: 9535009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thimerosal induces endothelium-dependent vascular smooth muscle relaxations by interacting with thiol groups. Relaxations are likely to be mediated by endothelium-derived relaxing factor (EDRF).
    Förstermann U; Burgwitz K; Frölich JC
    Naunyn Schmiedebergs Arch Pharmacol; 1986 Dec; 334(4):501-7. PubMed ID: 3102978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The endothelium-dependent vasodilator effect of acetylcholine: characterization of the endothelial relaxing factor with inhibitors of arachidonic acid metabolism.
    Förstermann U; Neufang B
    Eur J Pharmacol; 1984 Aug; 103(1-2):65-70. PubMed ID: 6434332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycyrrhetinic acid-sensitive mechanism does not make a major contribution to non-prostanoid, non-nitric oxide mediated endothelium-dependent relaxation of rat mesenteric artery in response to acetylcholine.
    Tanaka Y; Otsuka A; Tanaka H; Shigenobu K
    Res Commun Mol Pathol Pharmacol; 1999 Mar; 103(3):227-39. PubMed ID: 10509734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Difference in prostaglandin modulation of arterial and venous smooth muscle responses to bradykinin and norepinephrine.
    Greenberg S; Kadowitz PJ
    Methods Find Exp Clin Pharmacol; 1982; 4(1):7-24. PubMed ID: 6806549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelium-dependent and -independent mechanisms of action of acetylcholine in monkey and dog isolated arteries.
    Okamura T; Minami Y; Toda N
    Pharmacology; 1989; 38(5):279-88. PubMed ID: 2762371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. C-6-sulfidopeptide leukotrienes are unlikely to be involved in the endothelium dependent relaxation of rabbit aorta by acetylcholine.
    Förstermann U; Neufang B
    Prostaglandins; 1984 Feb; 27(2):181-93. PubMed ID: 6718751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mediators of arachidonic acid-induced relaxation of bovine coronary artery.
    Pratt PF; Rosolowsky M; Campbell WB
    Hypertension; 1996 Jul; 28(1):76-82. PubMed ID: 8675267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relaxant effect of phospholipase A2 from Vipera russelli snake venom on rat aorta.
    Huang HC; Lee CY
    Eur J Pharmacol; 1985 Nov; 118(1-2):139-46. PubMed ID: 4085546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism underlying relaxations caused by prostaglandins and thromboxane A2 analog in isolated dog arteries.
    Toda N; Inoue S; Okamura T; Okunishi H
    J Cardiovasc Pharmacol; 1988 Mar; 11(3):354-62. PubMed ID: 2452930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.