BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38017673)

  • 1. Effects of reaction conditions on the wet oxidation of excess sludge from the caprolactam wastewater treatment process.
    Shulin Q; Zhongquan W; Weicheng Z; Yingxi Z; Xu Z
    Water Sci Technol; 2023 Nov; 88(10):2491-2498. PubMed ID: 38017673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wet oxidation and catalytic wet oxidation of pharmaceutical sludge.
    Zeng X; Liu J; Zhao J
    Sci Rep; 2023 Feb; 13(1):2544. PubMed ID: 36781866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wet oxidation of sewage sludge: full-scale experience and process modeling.
    Bertanza G; Galessi R; Menoni L; Salvetti R; Slavik E; Zanaboni S
    Environ Sci Pollut Res Int; 2015 May; 22(10):7306-16. PubMed ID: 24916064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient degradation of pharmaceutical sludge by catalytic wet oxidation using CuO-CeO2/γ-Al2O3 as a catalyst.
    Zeng X; Liu J; Zhao J
    PLoS One; 2018; 13(10):e0199520. PubMed ID: 30303969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of oily sludge in supercritical water.
    Cui B; Cui F; Jing G; Xu S; Huo W; Liu S
    J Hazard Mater; 2009 Jun; 165(1-3):511-7. PubMed ID: 19019533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of wet air oxidation and Thermal Hydrolysis technologies in sludge treatment.
    Hii K; Baroutian S; Parthasarathy R; Gapes DJ; Eshtiaghi N
    Bioresour Technol; 2014 Mar; 155():289-99. PubMed ID: 24457302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anaerobic treatability of liquid residue from wet oxidation of sewage sludge.
    Bertanza G; Galessi R; Menoni L; Pedrazzani R; Salvetti R; Zanaboni S
    Environ Sci Pollut Res Int; 2015 May; 22(10):7317-26. PubMed ID: 25035054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating the excess sludge reduction in activated sludge system with ultrasonic treatment.
    Wu S; Zheng M; Dong Q; Liu Y; Wang C
    Water Sci Technol; 2018 May; 77(9-10):2341-2347. PubMed ID: 29757186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic wet oxidation of high concentration pharmaceutical wastewater with Fe
    Zeng X; Liu J; Zhao J
    Water Sci Technol; 2018 Jul; 2017(3):661-666. PubMed ID: 30016283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new approach for excess sludge reduction by manganese dioxide oxidation: performance, kinetics, and mechanism studies.
    Hu W; Xie Y; Zeng Y; Li P; Wang Y; Zhang Y
    Environ Sci Pollut Res Int; 2018 Oct; 25(29):29356-29365. PubMed ID: 30121769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of non-catalytic thermal hydrolysis and wet oxidation for sewage sludge degradation under moderate operating conditions.
    Malhotra M; Garg A
    J Environ Manage; 2019 May; 238():72-83. PubMed ID: 30849600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pretreatment followed by anaerobic digestion of secondary sludge for reduction of sewage sludge volume.
    Abe N; Tang YQ; Iwamura M; Morimura S; Kida K
    Water Sci Technol; 2013; 67(11):2527-33. PubMed ID: 23752385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disintegration impact on sludge digestion process.
    Dauknys R; Rimeika M; Jankeliūnaitė E; Mažeikienė A
    Environ Technol; 2016 Nov; 37(21):2768-72. PubMed ID: 26979664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetic acid recovery from a hybrid biological-hydrothermal treatment process of sewage sludge - a pilot plant study.
    Andrews J; Dare P; Estcourt G; Gapes D; Lei R; McDonald B; Wijaya N
    Water Sci Technol; 2015; 71(5):734-9. PubMed ID: 25768220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: Preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment.
    Zhang H; Xue G; Chen H; Li X
    Chemosphere; 2018 Jan; 191():64-71. PubMed ID: 29031054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subcritical wet oxidation of municipal sewage sludge: comparison of batch and continuous experiments.
    Lendormi T; Prevot C; Doppenbe F; Foussard JN; Debellefontaine H
    Water Sci Technol; 2001; 44(5):161-9. PubMed ID: 11695455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of operational conditions on sludge degradation and organic acids formation in low-critical wet air oxidation.
    Chung J; Lee M; Ahn J; Bae W; Lee YW; Shim H
    J Hazard Mater; 2009 Feb; 162(1):10-6. PubMed ID: 18579292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wet flue gas desulfurization wastewater treatment with reclaimed water treatment plant sludge: a case study.
    Chen H; Wang Y; Wei Y; Peng L; Jiang B; Li G; Yu G; Du C
    Water Sci Technol; 2018 Dec; 78(11):2392-2403. PubMed ID: 30699091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment of real industrial wastewater using the combined approach of advanced oxidation followed by aerobic oxidation.
    Ramteke LP; Gogate PR
    Environ Sci Pollut Res Int; 2016 May; 23(10):9712-29. PubMed ID: 26846248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.