These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 38017734)

  • 41. Analysis of illumination uniformity affected by small-scale self-focusing of a pump beam in the radial smoothing scheme.
    Weng X; Li T; Zhong Z; Zhang B
    Appl Opt; 2017 Nov; 56(32):8902-8907. PubMed ID: 29131169
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stable black self-guided beams of circular symmetry in a bulk Kerr medium.
    Snyder AW; Poladian L; Mitchell DJ
    Opt Lett; 1992 Jun; 17(11):789-91. PubMed ID: 19794632
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Abruptly autofocusing chirped ring Pearcey Gaussian vortex beams with caustics state in the nonlinear medium.
    Zhang L; Deng D; Yang X; Wang G; Liu H
    Opt Express; 2020 Jan; 28(1):425-434. PubMed ID: 32118969
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Experimental focusing shocklike dynamics in a nonlocal optical stochastic Kerr medium.
    Aleksanyan A; Louis H; Henninot JF; Louvergneaux E
    Phys Rev E; 2021 Feb; 103(2-1):022701. PubMed ID: 33736110
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multiple hot images from an obscuration in an intense laser beam through cascaded Kerr medium disks.
    Wang Y; Wen S; You K; Tang Z; Deng J; Zhang L; Fan D
    Appl Opt; 2008 Oct; 47(30):5668-81. PubMed ID: 18936816
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nonparaxial propagation and the radiation forces of the chirped circular Airy derivative beams.
    Yu J; Wang Y; Bai Z; Wu L; Fu C; Liu S; Liu Y
    Opt Express; 2023 Mar; 31(7):11053-11066. PubMed ID: 37155749
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Efficiency estimates and practical aspects of an optical Kerr gate for time-resolved luminescence spectroscopy.
    Dmitruk I; Shynkarenko Y; Dmytruk A; Aleksiuk D; Kadan V; Korenyuk P; Zubrilin N; Blonskiy I
    Methods Appl Fluoresc; 2016 Oct; 4(4):044007. PubMed ID: 28192300
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of the modulated vortex and second-order chirp on the propagation dynamics of ring Pearcey Gaussian beams.
    Zhang L; Deng D; Yang X; Wang G; Liu H
    Opt Lett; 2019 Oct; 44(19):4654-4657. PubMed ID: 31568409
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Kerr-induced spontaneous Bessel beam formation in the regime of strong two-photon absorption.
    Faccio D; Clerici M; Averchi A; Jedrkiewicz O; Tzortzakis S; Papazoglou DG; Bragheri F; Tartara L; Trita A; Henin S; Cristiani I; Couairon A; Di Trapani P
    Opt Express; 2008 May; 16(11):8213-8. PubMed ID: 18545532
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Screening of surfactants for harmful algal blooms mitigation.
    Sun XX; Han KN; Choi JK; Kim EK
    Mar Pollut Bull; 2004 May; 48(9-10):937-45. PubMed ID: 15111041
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dynamics of Gaussian beam modeled by fractional Schrödinger equation with a variable coefficient.
    Zang F; Wang Y; Li L
    Opt Express; 2018 Sep; 26(18):23740-23750. PubMed ID: 30184870
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Femtosecond snapshot imaging of propagating light itself.
    Hosoda M; Aoshima S; Fujimoto M; Tsuchiya Y
    Appl Opt; 2002 Apr; 41(12):2308-17. PubMed ID: 12003225
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dynamic control of collapse in a vortex Airy beam.
    Chen RP; Chew KH; He S
    Sci Rep; 2013; 3():1406. PubMed ID: 23518858
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of initial frequency chirp on Airy pulse propagation in an optical fiber.
    Zhang L; Liu K; Zhong H; Zhang J; Li Y; Fan D
    Opt Express; 2015 Feb; 23(3):2566-76. PubMed ID: 25836121
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Control of gradient catastrophes developing from dark beams.
    Malaguti S; Corli A; Trillo S
    Opt Lett; 2010 Dec; 35(24):4217-9. PubMed ID: 21165142
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modification of a quasi-monochromatic beam spatial coherence function through propagation in a two-dimensional Kerr medium.
    Gross B; Manassah JT
    Opt Lett; 1992 Feb; 17(3):166. PubMed ID: 19784263
    [No Abstract]   [Full Text] [Related]  

  • 57. Feshbach-resonance-induced atomic filamentation and quantum pair correlation in atom-laser-beam propagation.
    Zhang W; Search CP; Pu H; Meystre P; Wright EM
    Phys Rev Lett; 2003 Apr; 90(14):140401. PubMed ID: 12731898
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optical Kerr effect field measurements and ad hoc engineering model comparisons.
    Stotts LB; Oliver A; DiComo G; Helle M; Young J; Isaacs J; Peñano JR; Tellez JA; Schmidt JD; Coffaro J; Urick VJ
    Opt Express; 2021 Aug; 29(16):25731-25744. PubMed ID: 34614896
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modeling of nonlinear combining of multiple laser beams in Kerr medium.
    Lushnikov PM; Vladimirova N
    Opt Express; 2015 Nov; 23(24):31120-5. PubMed ID: 26698740
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Propagation and dynamical characteristics of a Bessel-Gaussian beam in a chiral medium.
    Hui Y; Cui Z; Li Y; Zhao W; Han Y
    J Opt Soc Am A Opt Image Sci Vis; 2018 Aug; 35(8):1299-1305. PubMed ID: 30110291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.