These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38017764)

  • 1. Three-dimensional plasmonic lithography imaging modeling based on the RCWA algorithm for computational lithography.
    Ding H; Fan T; Zhang L; Wei Y; Ye T
    Opt Express; 2023 Oct; 31(22):36061-36077. PubMed ID: 38017764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic lithography fast imaging model based on the decomposition machine learning method.
    Ding H; Liu L; Li Z; Dong L; Wei Y; Ye T
    Opt Express; 2023 Jan; 31(1):192-210. PubMed ID: 36606960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Plasmonic Parameters on 7-nm Patterning in Plasmonic Computational Lithography.
    Kim SK
    J Nanosci Nanotechnol; 2018 Oct; 18(10):7124-7127. PubMed ID: 29954545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual plasmonic modes in the visible light region in rectangular wave-shaped surface relief plasmonic gratings.
    Hidayat R; Pradana JS; Fariz A; Komalasari S; Chalimah S; Bahar H
    Sci Rep; 2023 Mar; 13(1):5274. PubMed ID: 37002239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rigorous coupled-wave analysis of a multi-layered plasmonic integrated refractive index sensor.
    Schlipf J; Fischer IA
    Opt Express; 2021 Oct; 29(22):36201-36210. PubMed ID: 34809037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on forbidden pitch in plasmonic lithography: taking 365 nm wavelength thin silver film-based superlens imaging lithography as an example.
    Ding H; Liu L; Dong L; Han D; Fan T; Zhang L; Wei Y
    Opt Express; 2022 Sep; 30(19):33869-33885. PubMed ID: 36242413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale 2.5-dimensional surface patterning with plasmonic lithography.
    Jung H; Park C; Oh S; Hahn JW
    Sci Rep; 2017 Aug; 7(1):9721. PubMed ID: 28852013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global rigorous coupled wave analysis for design of multilayer metasurface absorbers.
    Wang L; Fang D; Jin H; Li J
    Opt Express; 2023 Nov; 31(24):40270-40284. PubMed ID: 38041332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Rigorous Coupled-Wave Analysis Simulation of Mueller Matrix Ellipsometry of Three-Dimensional Multilayer Nanostructures.
    Pham HL; Alcaire T; Soulan S; Le Cunff D; Tortai JH
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localized input fields in rigorous coupled-wave analysis.
    Auer M; Brenner KH
    J Opt Soc Am A Opt Image Sci Vis; 2014 Nov; 31(11):2385-93. PubMed ID: 25401349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of pattern quality in maskless plasmonic lithography via spatial loss modulation.
    Han D; Deng S; Ye T; Wei Y
    Microsyst Nanoeng; 2023; 9():40. PubMed ID: 37007604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient wave optics modeling of nanowire solar cells using rigorous coupled-wave analysis.
    Robertson KW; LaPierre RR; Krich JJ
    Opt Express; 2019 Feb; 27(4):A133-A147. PubMed ID: 30876055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model-informed deep learning for computational lithography with partially coherent illumination.
    Zheng X; Ma X; Zhao Q; Pan Y; Arce GR
    Opt Express; 2020 Dec; 28(26):39475-39491. PubMed ID: 33379496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic ITO-free polymer solar cell.
    Lin MY; Kang YL; Chen YC; Tsai TH; Lin SC; Huang YH; Chen YJ; Lu CY; Lin HY; Wang LA; Wu CC; Lee SC
    Opt Express; 2014 Mar; 22 Suppl 2():A438-45. PubMed ID: 24922253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic films based on colloidal lithography.
    Ai B; Yu Y; Möhwald H; Zhang G; Yang B
    Adv Colloid Interface Sci; 2014 Apr; 206():5-16. PubMed ID: 24321859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aspects for calculating local absorption with the rigorous coupled-wave method.
    Brenner KH
    Opt Express; 2010 May; 18(10):10369-76. PubMed ID: 20588892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing one dimensional sensitivity with plasmonic coupling: erratum.
    O'Mullane S; Peterson B; Race J; Keller N; Diebold AC
    Opt Express; 2016 Feb; 24(4):3613-4. PubMed ID: 26907019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Information theoretical approaches in computational lithography.
    Wang Z; Ma X; Arce GR; Garcia-Frias J
    Opt Express; 2018 Jun; 26(13):16736-16751. PubMed ID: 30119496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scalable Fabrication of Multiplexed Plasmonic Nanoparticle Structures Based on AFM Lithography.
    Chen J; Sun Y; Zhong L; Shao W; Huang J; Liang F; Cui Z; Liang Z; Jiang L; Chi L
    Small; 2016 Nov; 12(42):5818-5825. PubMed ID: 27553257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size dependence of band-gaps in a one-dimensional plasmonic crystal.
    Watanabe H; Honda M; Yamamoto N
    Opt Express; 2014 Mar; 22(5):5155-65. PubMed ID: 24663855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.