BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38017930)

  • 1. Temperature-compensated fiber-optic SPR microfluidic sensor based on micro-nano 3D printing.
    Wei Y; Shi C; Zhang Y; Liu C; Tang Y; Ren P; Wang C; Zhang Y; Liu Z
    Opt Express; 2023 Nov; 31(23):38179-38190. PubMed ID: 38017930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Temperature-Compensated DNA Hybridization Detection Using a Dual-Channel Optical Fiber Sensor.
    Gong P; Wang Y; Zhou X; Wang S; Zhang Y; Zhao Y; Nguyen LV; Ebendorff-Heidepriem H; Peng L; Warren-Smith SC; Li X
    Anal Chem; 2021 Aug; 93(30):10561-10567. PubMed ID: 34291916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-Plasmon-Resonance-Based Optical-Fiber Micro-Displacement Sensor with Temperature Compensation.
    Wei Y; Wu P; Zhu Z; Liu L; Liu C; Hu J; Wang S; Zhang Y
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30249035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-situ dual-channel surface plasmon resonance fiber sensor for temperature-compensated detection of glucose concentration.
    Wu S; Tan Q; Forsberg E; Hu S; He S
    Opt Express; 2020 Jul; 28(14):21046-21061. PubMed ID: 32680152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Channel SPR Sensor Combined Application of Polymer- and Vitreous-Clad Optic Fibers.
    Wei Y; Su Y; Liu C; Nie X; Liu Z; Zhang Y; Zhang Y
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29232841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research Advances on Fiber-Optic SPR Sensors with Temperature Self-Compensation.
    Zhao H; Wang F; Han Z; Cheng P; Ding Z
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All-fiber biological detection microfluidic chip based on space division and wavelength division multiplexing technologies.
    Wei Y; Ren Z; Liu C; Jiang T; Wang R; Shi C; Liu C
    Lab Chip; 2022 Nov; 22(23):4501-4510. PubMed ID: 36305279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. U-fiber-based biosensor for temperature-compensated acetylcholine-specific measurement.
    Zhang H; Li X; Zhou X; Gong P; Zhao Y
    Opt Lett; 2023 Apr; 48(8):2138-2141. PubMed ID: 37058661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. No-core optical fiber sensor based on surface plasmon resonance for glucose solution concentration and temperature measurement.
    Li B; Yan X; Zhang X; Wang F; Li S; Suzuki T; Ohishi Y; Cheng T
    Opt Express; 2021 Apr; 29(9):12930-12940. PubMed ID: 33985038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wedged Fiber Optic Surface Plasmon Resonance Sensor for High-Sensitivity Refractive Index and Temperature Measurements.
    Li L; Li Y; Zong X; Zhao L; Li P; Yu K; Liu Y
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-situ detection scheme for EGFR gene with temperature and pH compensation using a triple-channel optical fiber biosensor.
    Li X; Gong P; Zhou X; Wang S; Liu Y; Zhang Y; Nguyen LV; Warren-Smith SC; Zhao Y
    Anal Chim Acta; 2023 Jul; 1263():341286. PubMed ID: 37225344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cascaded dual-channel broadband SPR fiber optic sensor based on Ag and Ag/ZnO/PDMS film structure.
    Yin Z; Jing X; Li K; Zhang Z; Hu L
    Opt Express; 2024 Feb; 32(4):6190-6203. PubMed ID: 38439328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-Plasmon-Resonance-Based Optical Fiber Curvature Sensor with Temperature Compensation by Means of Dual Modulation Method.
    Su Y; Wei Y; Zhang Y; Liu C; Nie X; Zhu Z; Liu L
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30096920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-channel curvature sensor based on fiber bending loss wavelength and SPR.
    Wei Y; Liu C; Liu C; Shi C; Wang R; Wang X; Ren Z; Ran Z; Liu Z; Zhang Y
    Opt Lett; 2022 Nov; 47(22):6017-6020. PubMed ID: 37219161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional micro displacement sensor based on fiber SPR mechanisms.
    Wei Y; Shi C; Liu C; Liu C; Wang X; Tang Y; Wang R; Liu Z
    Opt Express; 2023 Feb; 31(4):6411-6425. PubMed ID: 36823898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Fiber Optic Surface Plasmon Resonance Biosensors with Special Boronic Acid Derivative to Detect Glycoprotein.
    Zhang Y; Wang F; Qian S; Liu Z; Wang Q; Gu Y; Wu Z; Jing Z; Sun C; Peng W
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 28974028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature and salinity sensing characteristics of embedded core optical fiber based on surface plasmon resonance.
    Chen Y; Ma M; Tian F; Zeng Z; Xiu Z; Liu S; Yang X; Li L; Zhang J; Liu C; Liu Z
    Heliyon; 2023 Nov; 9(11):e21049. PubMed ID: 37964833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. V-shaped micro-structure optical fiber surface plasmon resonance sensor for the simultaneous measurement of the refractive index and temperature.
    Liu L; Liu Z; Zhang Y; Liu S
    Opt Lett; 2019 Oct; 44(20):5093-5096. PubMed ID: 31613272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probe-Type Multi-Core Fiber Optic Sensor for Simultaneous Measurement of Seawater Salinity, Pressure, and Temperature.
    Feng C; Niu H; Wang H; Wang D; Wei L; Ju T; Yuan L
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting.
    Shrivastav AM; Usha SP; Gupta BD
    Biosens Bioelectron; 2016 May; 79():150-7. PubMed ID: 26706813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.