These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38018656)

  • 1. Angle-dependent light scattering in tissue phantoms for the case of thin bone layers with predominant forward scattering.
    Witke T; Kuhn E; Teichert F; Goßler C; Schwarz UT; Thränhardt A
    J Biophotonics; 2024 Mar; 17(3):e202300358. PubMed ID: 38018656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations.
    Toublanc D
    Appl Opt; 1996 Jun; 35(18):3270-4. PubMed ID: 21102712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comment on 'the use of the Henyey-Greenstein phase function in Monte Carlo simulations in biomedical optics'.
    Binzoni T; Leung TS; Gandjbakhche AH; Rüfenacht D; Delpy DT
    Phys Med Biol; 2006 Nov; 51(22):L39-41. PubMed ID: 17068360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of diffuse photon migration in tissue by a Monte Carlo method derived from the optical scattering of spheroids.
    Hart VP; Doyle TE
    Appl Opt; 2013 Sep; 52(25):6220-9. PubMed ID: 24085080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of the Henyey-Greenstein phase function in Monte Carlo simulations in biomedical optics.
    Binzoni T; Leung TS; Gandjbakhche AH; Rüfenacht D; Delpy DT
    Phys Med Biol; 2006 Sep; 51(17):N313-22. PubMed ID: 16912370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Successive order, multiple scattering of two-term Henyey-Greenstein phase functions.
    Pfeiffer N; Chapman GH
    Opt Express; 2008 Sep; 16(18):13637-42. PubMed ID: 18772974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A deterministic partial differential equation model for dose calculation in electron radiotherapy.
    Duclous R; Dubroca B; Frank M
    Phys Med Biol; 2010 Jul; 55(13):3843-57. PubMed ID: 20571208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The optical properties of the cochlear bone.
    Ugnell AO; Oberg PA
    Med Eng Phys; 1997 Oct; 19(7):630-6. PubMed ID: 9457696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the propagation of ultra-short pulse light in cylindrical optical phantoms.
    Sassaroli A; Martelli F; Imai D; Yamada Y
    Phys Med Biol; 1999 Nov; 44(11):2747-63. PubMed ID: 10588282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth.
    Kanick SC; Robinson DJ; Sterenborg HJ; Amelink A
    Phys Med Biol; 2009 Nov; 54(22):6991-7008. PubMed ID: 19887712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-term scattering phase function for photon transport to model subdiffuse reflectance in superficial tissues.
    Jacques SL; McCormick NJ
    Biomed Opt Express; 2023 Feb; 14(2):751-770. PubMed ID: 36874481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low-scattering region.
    Hayashi T; Kashio Y; Okada E
    Appl Opt; 2003 Jun; 42(16):2888-96. PubMed ID: 12790437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new phase function approximating to Mie scattering for radiative transport equations.
    Liu P
    Phys Med Biol; 1994 Jun; 39(6):1025-36. PubMed ID: 15551577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acuros CTS: A fast, linear Boltzmann transport equation solver for computed tomography scatter - Part I: Core algorithms and validation.
    Maslowski A; Wang A; Sun M; Wareing T; Davis I; Star-Lack J
    Med Phys; 2018 May; 45(5):1899-1913. PubMed ID: 29509970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light wavelength effects in submicrometer phosphor materials using Mie scattering and Monte Carlo simulation.
    Liaparinos PF
    Med Phys; 2013 Oct; 40(10):101911. PubMed ID: 24089913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the accuracy of generalized Fokker-Planck transport equations in tissue optics.
    Phillips KG; Lancellotti C
    Appl Opt; 2009 Jan; 48(2):229-41. PubMed ID: 19137033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Open source software for electric field Monte Carlo simulation of coherent backscattering in biological media containing birefringence.
    Radosevich AJ; Rogers JD; Capoğlu IR; Mutyal NN; Pradhan P; Backman V
    J Biomed Opt; 2012 Nov; 17(11):115001. PubMed ID: 23123973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial and angular distribution of light incident on coatings using Mie-scattering Monte Carlo simulations.
    Yamada M; Butts MD; Kalla KK
    J Cosmet Sci; 2005; 56(3):193-204. PubMed ID: 16116524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of scattering error in spectrophotometric measurements of light absorption by aquatic particles from three-dimensional radiative transfer simulations.
    Stramski D; Piskozub J
    Appl Opt; 2003 Jun; 42(18):3634-46. PubMed ID: 12833969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms.
    Palmer GM; Ramanujam N
    Appl Opt; 2006 Feb; 45(5):1062-71. PubMed ID: 16512550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.