These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. New insights about the toxicity of 2,4-D: Gene expression analysis reveals modulation on several subcellular responses in Chironomus riparius. Pinto TJDS; Martínez-Guitarte JL; Dias MA; Montagner CC; Espindola ELG; Muñiz-González AB Pestic Biochem Physiol; 2024 Sep; 204():106088. PubMed ID: 39277401 [TBL] [Abstract][Full Text] [Related]
4. Persistent pesticides: effects of endosulfan at the molecular level on the aquatic invertebrate Chironomus riparius. Muñiz-González AB; Novo M; Martínez-Guitarte JL Environ Sci Pollut Res Int; 2021 Jun; 28(24):31431-31446. PubMed ID: 33608783 [TBL] [Abstract][Full Text] [Related]
5. Life history and biochemical effects of chlorantraniliprole on Chironomus riparius. Rodrigues AC; Gravato C; Quintaneiro C; Golovko O; Žlábek V; Barata C; Soares AM; Pestana JL Sci Total Environ; 2015 Mar; 508():506-13. PubMed ID: 25526627 [TBL] [Abstract][Full Text] [Related]
6. Impact of 2,4-D and fipronil on the tropical midge Chironomus sancticaroli (Diptera: Chironomidae). Pinto TJDS; Moreira RA; Silva LCMD; Yoshii MPC; Goulart BV; Fraga PD; Montagner CC; Daam MA; Espindola ELG Ecotoxicol Environ Saf; 2021 Feb; 209():111778. PubMed ID: 33338803 [TBL] [Abstract][Full Text] [Related]
7. Combined effects of benzophenone-3 and temperature on gene expression and enzymatic activity in the aquatic larvae Chironomus riparius. Muñiz-González AB; Martínez-Guitarte JL Sci Total Environ; 2020 Jan; 698():134292. PubMed ID: 31514035 [TBL] [Abstract][Full Text] [Related]
8. Suborganismal responses of the aquatic midge Chironomus riparius to polyethylene microplastics. Muñiz-González AB; Silva CJM; Patricio Silva AL; Campos D; Pestana JLT; Martínez-Guitarte JL Sci Total Environ; 2021 Aug; 783():146981. PubMed ID: 34088153 [TBL] [Abstract][Full Text] [Related]
9. Alteration in the expression of antioxidant and detoxification genes in Chironomus riparius exposed to zinc oxide nanoparticles. Gopalakrishnan Nair PM; Chung IM Comp Biochem Physiol B Biochem Mol Biol; 2015 Dec; 190():1-7. PubMed ID: 26278375 [TBL] [Abstract][Full Text] [Related]
10. Aquatic-Terrestrial Insecticide Fluxes: Midges as Neonicotinoid Vectors. Roodt AP; Schaufelberger S; Schulz R Environ Toxicol Chem; 2023 Jan; 42(1):60-70. PubMed ID: 36205389 [TBL] [Abstract][Full Text] [Related]
11. Cypermethrin- and fipronil-based insecticides cause biochemical changes in Physalaemus gracilis tadpoles. Rutkoski CF; Macagnan N; Folador A; Skovronski VJ; do Amaral AMB; Leitemperger JW; Costa MD; Hartmann PA; Müller C; Loro VL; Hartmann MT Environ Sci Pollut Res Int; 2021 Jan; 28(4):4377-4387. PubMed ID: 32940837 [TBL] [Abstract][Full Text] [Related]
12. Comprehensive characterization of the acute and chronic toxicity of the neonicotinoid insecticide thiamethoxam to a suite of aquatic primary producers, invertebrates, and fish. Finnegan MC; Baxter LR; Maul JD; Hanson ML; Hoekstra PF Environ Toxicol Chem; 2017 Oct; 36(10):2838-2848. PubMed ID: 28493485 [TBL] [Abstract][Full Text] [Related]
13. Lethal and sublethal toxicity assessment of Bacillus thuringiensis var. israelensis and Beauveria bassiana based bioinsecticides to the aquatic insect Chironomus riparius. Bordalo MD; Gravato C; Beleza S; Campos D; Lopes I; Pestana JLT Sci Total Environ; 2020 Jan; 698():134155. PubMed ID: 31505347 [TBL] [Abstract][Full Text] [Related]
14. Biochemical effects of fipronil and its metabolites on lipid peroxidation and enzymatic antioxidant defense in tadpoles (Eupemphix nattereri: Leiuperidae). Gripp HS; Freitas JS; Almeida EA; Bisinoti MC; Moreira AB Ecotoxicol Environ Saf; 2017 Feb; 136():173-179. PubMed ID: 27870966 [TBL] [Abstract][Full Text] [Related]
15. Exposure to environmental concentrations of fipronil induces biochemical changes on a neotropical freshwater fish. Santillán Deiú A; Miglioranza KSB; Ondarza PM; de la Torre FR Environ Sci Pollut Res Int; 2021 Aug; 28(32):43872-43884. PubMed ID: 33840019 [TBL] [Abstract][Full Text] [Related]
16. Multi-generational exposure to fipronil, 2,4-D, and their mixtures in Chironomus sancticaroli: Biochemical, individual, and population endpoints. Pinto TJDS; Rocha GS; Moreira RA; Silva LCMD; Yoshii MPC; Goulart BV; Montagner CC; Daam MA; Espindola ELG Environ Pollut; 2021 Aug; 283():117384. PubMed ID: 34030066 [TBL] [Abstract][Full Text] [Related]
17. Gene expression analysis of Chironomus riparius in response to acute exposure to tire rubber microparticles and leachates. Caballero-Carretero P; Carrasco-Navarro V; Kukkonen JVK; Martínez-Guitarte JL Environ Pollut; 2024 Feb; 342():123111. PubMed ID: 38072024 [TBL] [Abstract][Full Text] [Related]
18. Effects of single exposure and binary mixtures of ultraviolet filters octocrylene and 2-ethylhexyl 4-(dimethylamino) benzoate on gene expression in the freshwater insect Chironomus riparius. Muñiz-González AB; Martínez-Guitarte JL Environ Sci Pollut Res Int; 2018 Dec; 25(35):35501-35514. PubMed ID: 30350147 [TBL] [Abstract][Full Text] [Related]
19. Effects of the insecticide fipronil in freshwater model organisms and microbial and periphyton communities. Pino-Otín MR; Ballestero D; Navarro E; Mainar AM; Val J Sci Total Environ; 2021 Apr; 764():142820. PubMed ID: 33121789 [TBL] [Abstract][Full Text] [Related]
20. Biochemical response of the Africanized honeybee exposed to fipronil. Roat TC; Carvalho SM; Palma MS; Malaspina O Environ Toxicol Chem; 2017 Jun; 36(6):1652-1660. PubMed ID: 27925273 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]