BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 38018912)

  • 1. Characterization on the oncogenic effect of the missense mutations of p53 via machine learning.
    Pan Q; Portelli S; Nguyen TB; Ascher DB
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38018912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TP53_PROF: a machine learning model to predict impact of missense mutations in TP53.
    Ben-Cohen G; Doffe F; Devir M; Leroy B; Soussi T; Rosenberg S
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35043155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the performance of computational predictors for estimating protein stability changes upon missense mutations.
    Iqbal S; Li F; Akutsu T; Ascher DB; Webb GI; Song J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34058752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutant p53 accumulation in human breast cancer is not an intrinsic property or dependent on structural or functional disruption but is regulated by exogenous stress and receptor status.
    Bouchalova P; Nenutil R; Muller P; Hrstka R; Appleyard MV; Murray K; Jordan LB; Purdie CA; Quinlan P; Thompson AM; Vojtesek B; Coates PJ
    J Pathol; 2014 Jul; 233(3):238-46. PubMed ID: 24687952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying the Molecular Drivers of Pathogenic Aldehyde Dehydrogenase Missense Mutations in Cancer and Non-Cancer Diseases.
    Jessen-Howard D; Pan Q; Ascher DB
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the
    Chitrala KN; Nagarkatti M; Nagarkatti P; Yeguvapalli S
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31216622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding and predicting the functional consequences of missense mutations in BRCA1 and BRCA2.
    Aljarf R; Shen M; Pires DEV; Ascher DB
    Sci Rep; 2022 Jun; 12(1):10458. PubMed ID: 35729312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytic, Preanalytic, and Clinical Validation of p53 IHC for Detection of
    Guedes LB; Almutairi F; Haffner MC; Rajoria G; Liu Z; Klimek S; Zoino R; Yousefi K; Sharma R; De Marzo AM; Netto GJ; Isaacs WB; Ross AE; Schaeffer EM; Lotan TL
    Clin Cancer Res; 2017 Aug; 23(16):4693-4703. PubMed ID: 28446506
    [No Abstract]   [Full Text] [Related]  

  • 9. [Advances on mutant p53 research].
    Li DH; Zhang LQ; He FC
    Yi Chuan; 2008 Jun; 30(6):697-703. PubMed ID: 18550490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-based predictions broadly link transcription factor mutations to gene expression changes in cancers.
    Ashworth J; Bernard B; Reynolds S; Plaisier CL; Shmulevich I; Baliga NS
    Nucleic Acids Res; 2014 Dec; 42(21):12973-83. PubMed ID: 25378323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of p53 protein core domain structural alteration on ovarian cancer survival.
    Rose SL; Robertson AD; Goodheart MJ; Smith BJ; DeYoung BR; Buller RE
    Clin Cancer Res; 2003 Sep; 9(11):4139-44. PubMed ID: 14519637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iSEE: Interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations.
    Geng C; Vangone A; Folkers GE; Xue LC; Bonvin AMJJ
    Proteins; 2019 Feb; 87(2):110-119. PubMed ID: 30417935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DARVIC: Dihedral angle-reliant variant impact classifier for functional prediction of missense VUS.
    Lagniton PNP; Tam B; Wang SM
    Comput Methods Programs Biomed; 2023 Aug; 238():107596. PubMed ID: 37201251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the transactivation activity of p53 missense mutants using a four-body potential score derived from Delaunay tessellations.
    Mathe E; Olivier M; Kato S; Ishioka C; Vaisman I; Hainaut P
    Hum Mutat; 2006 Feb; 27(2):163-72. PubMed ID: 16395672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of predicted and actual consequences of missense mutations.
    Miosge LA; Field MA; Sontani Y; Cho V; Johnson S; Palkova A; Balakishnan B; Liang R; Zhang Y; Lyon S; Beutler B; Whittle B; Bertram EM; Enders A; Goodnow CC; Andrews TD
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):E5189-98. PubMed ID: 26269570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network-based prediction approach for cancer-specific driver missense mutations using a graph neural network.
    Hatano N; Kamada M; Kojima R; Okuno Y
    BMC Bioinformatics; 2023 Oct; 24(1):383. PubMed ID: 37817080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detailed computational study of p53 and p16: using evolutionary sequence analysis and disease-associated mutations to predict the functional consequences of allelic variants.
    Greenblatt MS; Beaudet JG; Gump JR; Godin KS; Trombley L; Koh J; Bond JP
    Oncogene; 2003 Feb; 22(8):1150-63. PubMed ID: 12606942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Learning Classification and Structure-Functional Analysis of Cancer Mutations Reveal Unique Dynamic and Network Signatures of Driver Sites in Oncogenes and Tumor Suppressor Genes.
    Agajanian S; Odeyemi O; Bischoff N; Ratra S; Verkhivker GM
    J Chem Inf Model; 2018 Oct; 58(10):2131-2150. PubMed ID: 30253099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive omics studies of p53 mutants in human cancer.
    Malhotra L; Singh A; Kaur P; Ethayathulla AS
    Brief Funct Genomics; 2023 Apr; 22(2):97-108. PubMed ID: 35809339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis.
    Kato S; Han SY; Liu W; Otsuka K; Shibata H; Kanamaru R; Ishioka C
    Proc Natl Acad Sci U S A; 2003 Jul; 100(14):8424-9. PubMed ID: 12826609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.