These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 38019415)
1. Mendelian Randomization Identifies Genetically Supported Drug Targets for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Zhu Y; Li M; Wang H; Yang F; Du R; Pang X; Bai J; Huang X Mol Neurobiol; 2024 Jul; 61(7):3809-3818. PubMed ID: 38019415 [TBL] [Abstract][Full Text] [Related]
2. TBK1, a prioritized drug repurposing target for amyotrophic lateral sclerosis: evidence from druggable genome Mendelian randomization and pharmacological verification in vitro. Duan QQ; Wang H; Su WM; Gu XJ; Shen XF; Jiang Z; Ren YL; Cao B; Li GB; Wang Y; Chen YP BMC Med; 2024 Mar; 22(1):96. PubMed ID: 38443977 [TBL] [Abstract][Full Text] [Related]
3. Apolipoproteins, lipids, lipid-lowering drugs and risk of amyotrophic lateral sclerosis and frontotemporal dementia: a meta-analysis and Mendelian randomisation study. Chalitsios CV; Ley H; Gao J; Turner MR; Thompson AG J Neurol; 2024 Oct; 271(10):6956-6969. PubMed ID: 39230722 [TBL] [Abstract][Full Text] [Related]
4. C9orf72 and UNC13A are shared risk loci for amyotrophic lateral sclerosis and frontotemporal dementia: a genome-wide meta-analysis. Diekstra FP; Van Deerlin VM; van Swieten JC; Al-Chalabi A; Ludolph AC; Weishaupt JH; Hardiman O; Landers JE; Brown RH; van Es MA; Pasterkamp RJ; Koppers M; Andersen PM; Estrada K; Rivadeneira F; Hofman A; Uitterlinden AG; van Damme P; Melki J; Meininger V; Shatunov A; Shaw CE; Leigh PN; Shaw PJ; Morrison KE; Fogh I; Chiò A; Traynor BJ; Czell D; Weber M; Heutink P; de Bakker PI; Silani V; Robberecht W; van den Berg LH; Veldink JH Ann Neurol; 2014 Jul; 76(1):120-33. PubMed ID: 24931836 [TBL] [Abstract][Full Text] [Related]
5. Selective Genetic Overlap Between Amyotrophic Lateral Sclerosis and Diseases of the Frontotemporal Dementia Spectrum. Karch CM; Wen N; Fan CC; Yokoyama JS; Kouri N; Ross OA; Höglinger G; Müller U; Ferrari R; Hardy J; Schellenberg GD; Sleiman PM; Momeni P; Hess CP; Miller BL; Sharma M; Van Deerlin V; Smeland OB; Andreassen OA; Dale AM; Desikan RS; JAMA Neurol; 2018 Jul; 75(7):860-875. PubMed ID: 29630712 [TBL] [Abstract][Full Text] [Related]
6. Genetic variation in targets of lipid-lowering drugs and amyotrophic lateral sclerosis risk: a Mendelian randomization study. Li Z; Tian M; Jia H; Li X; Liu Q; Zhou X; Li R; Dong H; Liu Y Amyotroph Lateral Scler Frontotemporal Degener; 2024 Feb; 25(1-2):197-206. PubMed ID: 37688479 [TBL] [Abstract][Full Text] [Related]
7. TBK1 mutation frequencies in French frontotemporal dementia and amyotrophic lateral sclerosis cohorts. Le Ber I; De Septenville A; Millecamps S; Camuzat A; Caroppo P; Couratier P; Blanc F; Lacomblez L; Sellal F; Fleury MC; Meininger V; Cazeneuve C; Clot F; Flabeau O; LeGuern E; Brice A; Neurobiol Aging; 2015 Nov; 36(11):3116.e5-3116.e8. PubMed ID: 26476236 [TBL] [Abstract][Full Text] [Related]
8. Tale of two diseases: amyotrophic lateral sclerosis and frontotemporal dementia. Verma A Neurol India; 2014; 62(4):347-51. PubMed ID: 25237937 [TBL] [Abstract][Full Text] [Related]
9. Association between TBK1 mutations and risk of amyotrophic lateral sclerosis/frontotemporal dementia spectrum: a meta-analysis. Cui R; Tuo M; Li P; Zhou C Neurol Sci; 2018 May; 39(5):811-820. PubMed ID: 29349657 [TBL] [Abstract][Full Text] [Related]
10. Assessing Causal Relationship Between Human Blood Metabolites and Five Neurodegenerative Diseases With GWAS Summary Statistics. Chen H; Qiao J; Wang T; Shao Z; Huang S; Zeng P Front Neurosci; 2021; 15():680104. PubMed ID: 34955704 [No Abstract] [Full Text] [Related]
15. Identifying risk loci for FTD and shared genetic component with ALS: A large-scale multitrait association analysis. Chen K; Gao T; Liu Y; Zhu K; Wang T; Zeng P Neurobiol Aging; 2024 Feb; 134():28-39. PubMed ID: 37979250 [TBL] [Abstract][Full Text] [Related]
16. Family-based exome sequencing identifies RBM45 as a possible candidate gene for frontotemporal dementia and amyotrophic lateral sclerosis. van der Zee J; Dillen L; Baradaran-Heravi Y; Gossye H; Koçoğlu C; Cuyt I; Dermaut B; Sieben A; Baets J; De Jonghe P; Vandenberghe R; De Deyn P; Cras P; Engelborghs S; Van Broeckhoven C; Neurobiol Dis; 2021 Aug; 156():105421. PubMed ID: 34118419 [TBL] [Abstract][Full Text] [Related]
17. The emerging roles of microRNAs in the pathogenesis of frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) spectrum disorders. Gascon E; Gao FB J Neurogenet; 2014; 28(1-2):30-40. PubMed ID: 24506814 [TBL] [Abstract][Full Text] [Related]
18. SQSTM1 mutations in French patients with frontotemporal dementia or frontotemporal dementia with amyotrophic lateral sclerosis. Le Ber I; Camuzat A; Guerreiro R; Bouya-Ahmed K; Bras J; Nicolas G; Gabelle A; Didic M; De Septenville A; Millecamps S; Lenglet T; Latouche M; Kabashi E; Campion D; Hannequin D; Hardy J; Brice A; JAMA Neurol; 2013 Nov; 70(11):1403-10. PubMed ID: 24042580 [TBL] [Abstract][Full Text] [Related]
19. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Majounie E; Renton AE; Mok K; Dopper EG; Waite A; Rollinson S; Chiò A; Restagno G; Nicolaou N; Simon-Sanchez J; van Swieten JC; Abramzon Y; Johnson JO; Sendtner M; Pamphlett R; Orrell RW; Mead S; Sidle KC; Houlden H; Rohrer JD; Morrison KE; Pall H; Talbot K; Ansorge O; ; ; ; Hernandez DG; Arepalli S; Sabatelli M; Mora G; Corbo M; Giannini F; Calvo A; Englund E; Borghero G; Floris GL; Remes AM; Laaksovirta H; McCluskey L; Trojanowski JQ; Van Deerlin VM; Schellenberg GD; Nalls MA; Drory VE; Lu CS; Yeh TH; Ishiura H; Takahashi Y; Tsuji S; Le Ber I; Brice A; Drepper C; Williams N; Kirby J; Shaw P; Hardy J; Tienari PJ; Heutink P; Morris HR; Pickering-Brown S; Traynor BJ Lancet Neurol; 2012 Apr; 11(4):323-30. PubMed ID: 22406228 [TBL] [Abstract][Full Text] [Related]