These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38019643)

  • 1. Dry-Contact Thermal Interface Material with the Desired Bond Line Thickness and Ultralow Applied Thermal Resistance.
    Dou Z; Zhang B; Xu P; Fu Q; Wu K
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 38019643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultralow Interfacial Thermal Resistance of Graphene Thermal Interface Materials with Surface Metal Liquefaction.
    Dai W; Ren XJ; Yan Q; Wang S; Yang M; Lv L; Ying J; Chen L; Tao P; Sun L; Xue C; Yu J; Song C; Nishimura K; Jiang N; Lin CT
    Nanomicro Lett; 2022 Dec; 15(1):9. PubMed ID: 36484932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal Interface Materials with High Thermal Conductivity and Low Young's Modulus Using a Solid-Liquid Metal Codoping Strategy.
    Zhang XD; Zhang ZT; Wang HZ; Cao BY
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3534-3542. PubMed ID: 36604306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fillers and methods to improve the effective (out-plane) thermal conductivity of polymeric thermal interface materials - A review.
    Mumtaz N; Li Y; Artiaga R; Farooq Z; Mumtaz A; Guo Q; Nisa FU
    Heliyon; 2024 Feb; 10(3):e25381. PubMed ID: 38352797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of Al
    Jang S; Choi EJ; Cheon HJ; Choi WI; Shin WS; Lim JM
    Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly oriented BN-based TIMs with high through-plane thermal conductivity and low compression modulus.
    Yang R; Wang Y; Zhang Z; Xu K; Li L; Cao Y; Li M; Zhang J; Qin Y; Zhu B; Guo Y; Zhou Y; Cai T; Lin CT; Nishimura K; Xue C; Jiang N; Yu J
    Mater Horiz; 2024 Jul; ():. PubMed ID: 39042375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Dielectrophoretic Alignment of Biphasic Metal Fillers for Thermal Interface Materials.
    Lee Y; Akyildiz K; Kang C; So JH; Koo HJ
    Polymers (Basel); 2023 Dec; 15(24):. PubMed ID: 38139905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing Thermal Transport in Silicone Composites via Bridging Liquid Metal Fillers with Reactive Metal Co-Fillers and Matrix Viscosity Tuning.
    Uppal A; Kong W; Rana A; Wang RY; Rykaczewski K
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):43348-43355. PubMed ID: 34491735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alveoli-Mimetic Synergistic Liquid and Solid Thermal Conductive Interface as a Novel Strategy for Designing High-Performance Thermal Interface Materials.
    Zheng S; Xue H; Liu Y; Yu X; Cao Z
    Small; 2024 Apr; 20(16):e2306750. PubMed ID: 38044278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Integrated Approach to Design and Develop High-Performance Polymer-Composite Thermal Interface Material.
    Akhtar SS
    Polymers (Basel); 2021 Mar; 13(5):. PubMed ID: 33800734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High performance liquid metal thermal interface materials.
    Chen S; Deng Z; Liu J
    Nanotechnology; 2021 Feb; 32(9):092001. PubMed ID: 33207322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significantly enhanced phonon mean free path and thermal conductivity by percolation of silver nanoflowers.
    Suh D; Lee S; Xu C; Jan AA; Baik S
    Phys Chem Chem Phys; 2019 Jan; 21(5):2453-2462. PubMed ID: 30652710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scalable Compliant Graphene Fiber-Based Thermal Interface Material with Metal-Level Thermal Conductivity via Dual-Field Synergistic Alignment Engineering.
    Lu J; Ming X; Cao M; Liu Y; Wang B; Shi H; Hao Y; Zhang P; Li K; Wang L; Li P; Gao W; Cai S; Sun B; Yu ZZ; Xu Z; Gao C
    ACS Nano; 2024 Jul; 18(28):18560-18571. PubMed ID: 38941591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polydimethylsiloxane/aluminum oxide composites prepared by spatial confining forced network assembly for heat conduction and dissipation.
    Si W; He X; Huang Y; Gao X; Zheng X; Zheng X; Leng C; Su F; Wu D
    RSC Adv; 2018 Oct; 8(63):36007-36014. PubMed ID: 35558455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication, Thermal Conductivity, and Mechanical Properties of Hexagonal-Boron-Nitride-Pattern-Embedded Aluminum Oxide Composites.
    Yun H; Kwak MG; Park K; Kim Y
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Innocuous, Highly Conductive, and Affordable Thermal Interface Material with Copper-Based Multi-Dimensional Filler Design.
    Kim W; Kim C; Lee W; Park J; Kim D
    Biomolecules; 2021 Jan; 11(2):. PubMed ID: 33498514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Thermal Pad Composites Using Densely Aligned MgO Nanowires.
    Song K; Choi J; Cho D; Lee IH; Ahn C
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquid Metal Composites with Enhanced Thermal Conductivity and Stability Using Molecular Thermal Linker.
    Wang H; Xing W; Chen S; Song C; Dickey MD; Deng T
    Adv Mater; 2021 Oct; 33(43):e2103104. PubMed ID: 34510554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulatable Orthotropic 3D Hybrid Continuous Carbon Networks for Efficient Bi-Directional Thermal Conduction.
    Yu H; Peng L; Chen C; Qin M; Feng W
    Nanomicro Lett; 2024 May; 16(1):198. PubMed ID: 38758464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pressure-Activated Thermal Transport via Oxide Shell Rupture in Liquid Metal Capsule Beds.
    Uppal A; Ralphs M; Kong W; Hart M; Rykaczewski K; Wang RY
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2625-2633. PubMed ID: 31859474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.