BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 38019917)

  • 1. Biochemically functionalized probes for cell-type-specific targeting and recording in the brain.
    Zhang A; Zwang TJ; Lieber CM
    Sci Adv; 2023 Dec; 9(48):eadk1050. PubMed ID: 38019917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemically-functionalized probes for cell type-specific targeting and recording in the brain.
    Zhang A; Zwang TJ; Lieber CM
    bioRxiv; 2023 Oct; ():. PubMed ID: 37873102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Syringe-injectable mesh electronics integrate seamlessly with minimal chronic immune response in the brain.
    Zhou T; Hong G; Fu TM; Yang X; Schuhmann TG; Viveros RD; Lieber CM
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):5894-5899. PubMed ID: 28533392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology.
    Fu TM; Hong G; Viveros RD; Zhou T; Lieber CM
    Proc Natl Acad Sci U S A; 2017 Nov; 114(47):E10046-E10055. PubMed ID: 29109247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue-like Neural Probes for Understanding and Modulating the Brain.
    Hong G; Viveros RD; Zwang TJ; Yang X; Lieber CM
    Biochemistry; 2018 Jul; 57(27):3995-4004. PubMed ID: 29529359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesh electronics: a new paradigm for tissue-like brain probes.
    Hong G; Yang X; Zhou T; Lieber CM
    Curr Opin Neurobiol; 2018 Jun; 50():33-41. PubMed ID: 29202327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoenabled Direct Contact Interfacing of Syringe-Injectable Mesh Electronics.
    Lee JM; Hong G; Lin D; Schuhmann TG; Sullivan AT; Viveros RD; Park HG; Lieber CM
    Nano Lett; 2019 Aug; 19(8):5818-5826. PubMed ID: 31361503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Syringe-injectable Mesh Electronics for Stable Chronic Rodent Electrophysiology.
    Schuhmann TG; Zhou T; Hong G; Lee JM; Fu TM; Park HG; Lieber CM
    J Vis Exp; 2018 Jul; (137):. PubMed ID: 30080192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How is flexible electronics advancing neuroscience research?
    Chen Y; Rommelfanger NJ; Mahdi AI; Wu X; Keene ST; Obaid A; Salleo A; Wang H; Hong G
    Biomaterials; 2021 Jan; 268():120559. PubMed ID: 33310538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-explant profiling of subcellular-scale carbon fiber intracortical electrodes and surrounding neurons enables modeling of recorded electrophysiology.
    Letner JG; Patel PR; Hsieh JC; Smith Flores IM; Della Valle E; Walker LA; Weiland JD; Chestek CA; Cai D
    J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36848679
    [No Abstract]   [Full Text] [Related]  

  • 11. A fiber-shaped neural probe with alterable elastic moduli for direct implantation and stable electronic-brain interfaces.
    Tang C; Xie S; Wang M; Feng J; Han Z; Wu X; Wang L; Chen C; Wang J; Jiang L; Chen P; Sun X; Peng H
    J Mater Chem B; 2020 May; 8(20):4387-4394. PubMed ID: 32373848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuroadhesive protein coating improves the chronic performance of neuroelectronics in mouse brain.
    Golabchi A; Woeppel KM; Li X; Lagenaur CF; Cui XT
    Biosens Bioelectron; 2020 May; 155():112096. PubMed ID: 32090868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinspired neuron-like electronics.
    Yang X; Zhou T; Zwang TJ; Hong G; Zhao Y; Viveros RD; Fu TM; Gao T; Lieber CM
    Nat Mater; 2019 May; 18(5):510-517. PubMed ID: 30804509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soft High-Resolution Neural Interfacing Probes: Materials and Design Approaches.
    Lee M; Shim HJ; Choi C; Kim DH
    Nano Lett; 2019 May; 19(5):2741-2749. PubMed ID: 31002760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesh Nanoelectronics: Seamless Integration of Electronics with Tissues.
    Dai X; Hong G; Gao T; Lieber CM
    Acc Chem Res; 2018 Feb; 51(2):309-318. PubMed ID: 29381054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scalable Fabrication Framework of Implantable Ultrathin and Flexible Probes with Biodegradable Sacrificial Layers.
    Jiao X; Wang Y; Qing Q
    Nano Lett; 2017 Dec; 17(12):7315-7322. PubMed ID: 29115844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalable Three-Dimensional Recording Electrodes for Probing Biological Tissues.
    Lee JM; Lin D; Hong G; Kim KH; Park HG; Lieber CM
    Nano Lett; 2022 Jun; 22(11):4552-4559. PubMed ID: 35583378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. All-Tissue-like Multifunctional Optoelectronic Mesh for Deep-Brain Modulation and Mapping.
    Lee JM; Lin D; Kim HR; Pyo YW; Hong G; Lieber CM; Park HG
    Nano Lett; 2021 Apr; 21(7):3184-3190. PubMed ID: 33734716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultraflexible endovascular probes for brain recording through micrometer-scale vasculature.
    Zhang A; Mandeville ET; Xu L; Stary CM; Lo EH; Lieber CM
    Science; 2023 Jul; 381(6655):306-312. PubMed ID: 37471542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of insertion methods for surgical placement of penetrating neural interfaces.
    Thielen B; Meng E
    J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33845469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.