BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 38020010)

  • 1. Kinetic study of NADPH activation using ubiquinone-rhodol fluorescent probe and an Ir
    Komatsu H; Velychkivska N; Shatan AB; Shindo Y; Oka K; Ariga K; Hill JP; Labuta J
    RSC Adv; 2023 Nov; 13(48):34012-34019. PubMed ID: 38020010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ubiquinone-rhodol (UQ-Rh) for fluorescence imaging of NAD(P)H through intracellular activation.
    Komatsu H; Shindo Y; Oka K; Hill JP; Ariga K
    Angew Chem Int Ed Engl; 2014 Apr; 53(15):3993-5. PubMed ID: 24596071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The reduction of acetylpyridine adenine dinucleotide by NADH: is it a significant reaction of proton-translocating transhydrogenase, or an artefact?
    Stilwell SN; Bizouarn T; Jackson JB
    Biochim Biophys Acta; 1997 May; 1320(1):83-94. PubMed ID: 9186780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3.
    Sevrioukova I; Shaffer C; Ballou DP; Peterson JA
    Biochemistry; 1996 Jun; 35(22):7058-68. PubMed ID: 8679531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pathway of electron transfer in NADH:Q oxidoreductase.
    van Belzen R; Albracht SP
    Biochim Biophys Acta; 1989 May; 974(3):311-20. PubMed ID: 2499359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intensifying Electron Utilization by Surface-Anchored Rh Complex for Enhanced Nicotinamide Cofactor Regeneration and Photoenzymatic CO
    Cheng Y; Shi J; Wu Y; Wang X; Sun Y; Cai Z; Chen Y; Jiang Z
    Research (Wash D C); 2021; 2021():8175709. PubMed ID: 33693433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The recent development of fluorescent probes for the detection of NADH and NADPH in living cells and in vivo.
    Sun P; Zhang H; Sun Y; Liu J
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jan; 245():118919. PubMed ID: 32977107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for two independent pathways of electron transfer in mitochondrial NADH:Q oxidoreductase. II. Kinetics of reoxidation of the reduced enzyme.
    Albracht SP; Bakker PT
    Biochim Biophys Acta; 1986 Jul; 850(3):423-8. PubMed ID: 3015207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association and redox properties of the putidaredoxin reductase-nicotinamide adenine dinucleotide complex.
    Reipa V; Holden MJ; Vilker VL
    Biochemistry; 2007 Nov; 46(45):13235-44. PubMed ID: 17941648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mammalian dihydropyrimidine dehydrogenase: Added mechanistic details from transient-state analysis of charge transfer complexes.
    Smith MM; Forouzesh DC; Kaley NE; Liu D; Moran GR
    Arch Biochem Biophys; 2023 Mar; 736():109517. PubMed ID: 36681231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hydrogen bond network in the active site of Anabaena ferredoxin-NADP(+) reductase modulates its catalytic efficiency.
    Sánchez-Azqueta A; Herguedas B; Hurtado-Guerrero R; Hervás M; Navarro JA; Martínez-Júlvez M; Medina M
    Biochim Biophys Acta; 2014 Feb; 1837(2):251-63. PubMed ID: 24200908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of the purified, recombinant, NADP(H)-binding domain III of the proton-translocating nicotinamide nucleotide transhydrogenase from Rhodospirillum rubrum.
    Diggle C; Bizouarn T; Cotton NP; Jackson JB
    Eur J Biochem; 1996 Oct; 241(1):162-70. PubMed ID: 8898902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Why is the Ir(III)-Mediated Amido Transfer Much Faster Than the Rh(III)-Mediated Reaction? A Combined Experimental and Computational Study.
    Park Y; Heo J; Baik MH; Chang S
    J Am Chem Soc; 2016 Oct; 138(42):14020-14029. PubMed ID: 27690406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NADH:ubiquinone oxidoreductase of Vibrio alginolyticus: purification, properties, and reconstitution of the Na+ pump.
    Pfenninger-Li XD; Albracht SP; van Belzen R; Dimroth P
    Biochemistry; 1996 May; 35(20):6233-42. PubMed ID: 8639563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aqueous soluble tetrazolium/formazan MTS as an indicator of NADH- and NADPH-dependent dehydrogenase activity.
    Dunigan DD; Waters SB; Owen TC
    Biotechniques; 1995 Oct; 19(4):640-9. PubMed ID: 8777059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dehydrogenation of saturated CC and BN bonds at cationic N-heterocyclic carbene stabilized M(III) centers (M = Rh, Ir).
    Tang CY; Thompson AL; Aldridge S
    J Am Chem Soc; 2010 Aug; 132(30):10578-91. PubMed ID: 20662531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences between the reactivities of two pyridine nucleotides in the rapid reduction process and the reoxidation process of adrenodoxin reductase.
    Sugiyama T; Miura R; Yamano T
    J Biochem; 1979 Jul; 86(1):213-23. PubMed ID: 39065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NADPH oxidase of guinea-pig macrophages catalyses the reduction of ubiquinone-1 under anaerobic conditions.
    Murakami M; Nakamura M; Minakami S
    Biochem J; 1986 Jul; 237(2):541-5. PubMed ID: 3026322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NADH and NADPH-dependent reduction of coenzyme Q at the plasma membrane.
    Arroyo A; Kagan VE; Tyurin VA; Burgess JR; de Cabo R; Navas P; Villalba JM
    Antioxid Redox Signal; 2000; 2(2):251-62. PubMed ID: 11229530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation-reduction states of FMN and FAD in NADPH-cytochrome P-450 reductase during reduction by NADPH.
    Oprian DD; Coon MJ
    J Biol Chem; 1982 Aug; 257(15):8935-44. PubMed ID: 6807985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.