These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38020034)

  • 1. A light scattering camouflage membrane with similar solar spectrum reflectance to leaves based on a chlorophyll and titanium dioxide composite.
    Gao Y; Chen Y; Li Y; Liu W; Lu B
    RSC Adv; 2023 Nov; 13(48):33743-33753. PubMed ID: 38020034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nondestructive measurement of chlorophyll pigment content in plant leaves from three-color reflectance and transmittance.
    Yamada N; Fujimura S
    Appl Opt; 1991 Sep; 30(27):3964-73. PubMed ID: 20706488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Design of plant leaf bionic camouflage materials based on spectral analysis].
    Yang YJ; Liu ZM; Hu BR; Wu WJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Jun; 31(6):1668-72. PubMed ID: 21847955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation on the effects of water loss on the solar spectrum reflectance and transmittance of
    Gao Y; Tang B; Lu B; Ji G; Ye H
    RSC Adv; 2021 Nov; 11(59):37268-37275. PubMed ID: 35496413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic multilayer film simulating solar spectrum reflection characteristics of natural vegetations for optical camouflage.
    Deng Z; Zhou P; Hu W; Wang X; Gong R
    Opt Express; 2023 Oct; 31(22):37082-37093. PubMed ID: 38017845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photosynthesis, chlorophyll fluorescence and photochemical reflectance index in photoinhibited leaves.
    Hikosaka K
    Funct Plant Biol; 2021 Jul; 48(8):815-826. PubMed ID: 33832552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of two-flux and four-flux models for predicting the spectral reflectance and transmittance factors of flowable dental resin composites.
    Duveiller V; Clerc R; Eymard J; Salomon JP; Hébert M
    Dent Mater; 2023 Aug; 39(8):743. PubMed ID: 37394391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New vegetation indices for remote measurement of chlorophylls based on leaf directional reflectance spectra.
    Maccioni A; Agati G; Mazzinghi P
    J Photochem Photobiol B; 2001 Aug; 61(1-2):52-61. PubMed ID: 11485848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Off-Nadir Hyperspectral Sensing for Estimation of Vertical Profile of Leaf Chlorophyll Content within Wheat Canopies.
    Kong W; Huang W; Casa R; Zhou X; Ye H; Dong Y
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29168757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Color-Changing Biomimetic Material Closely Resembling the Spectral Characteristics of Vegetation Foliage.
    Huang Z; Long L; Gao Y; Tang Z; Zhang J; Xu K; Ye H; Liu M
    Small; 2024 Mar; 20(10):e2303966. PubMed ID: 37907423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light scattering in stacked mesophyll cells results in similarity characteristic of solar spectral reflectance and transmittance of natural leaves.
    Xu K; Ye H
    Sci Rep; 2023 Mar; 13(1):4694. PubMed ID: 36949090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on optical properties of two commercial visible-light-cured composite resins by diffuse reflectance measurements.
    Taira M; Okazaki M; Takahashi J
    J Oral Rehabil; 1999 Apr; 26(4):329-37. PubMed ID: 10232860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of Corn Canopy Chlorophyll Content Using Derivative Spectra in the O
    Zhang X; He Y; Wang C; Xu F; Li X; Tan C; Chen D; Wang G; Shi L
    Front Plant Sci; 2019; 10():1047. PubMed ID: 31507626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffuse reflectance of short-fiber-reinforced composites aligned by an electric field.
    Chirdon WM; O'Brien WJ; Robertson RE
    Dent Mater; 2006 Jan; 22(1):57-62. PubMed ID: 16154629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical properties of an optically rough coating from inversion of diffuse reflectance measurements.
    Murphy AB
    Appl Opt; 2007 Jun; 46(16):3133-43. PubMed ID: 17514266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Leaf photosynthetic pigment seasonal dynamic of Quercus aliena var. acuteserrata and its spectral reflectance response under throughfall elimination].
    Liu C; Sun PS; Liu SR; Lu HB; Chen ZC; Liu XJ
    Ying Yong Sheng Tai Xue Bao; 2017 Apr; 28(4):1077-1086. PubMed ID: 29741302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Dual NDVI Ratio Vegetation Index: A Kind of Vegetation Index Assessing Leaf Carotenoid Content Based on Leaf Optical Properties Model].
    Wang H; Shi R; Liu PD; Gao W
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jul; 36(7):2189-94. PubMed ID: 30035980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of leaf traits from reflectance measurements: comparison between methods based on vegetation indices and several versions of the PROSPECT model.
    Jiang J; Comar A; Burger P; Bancal P; Weiss M; Baret F
    Plant Methods; 2018; 14():23. PubMed ID: 29581726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vegetation stress detection through chlorophyll a + b estimation and fluorescence effects on hyperspectral imagery.
    Zarco-Tejada PJ; Miller JR; Mohammed GH; Noland TL; Sampson PH
    J Environ Qual; 2002; 31(5):1433-41. PubMed ID: 12371159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reflectance variation within the in-chlorophyll centre waveband for robust retrieval of leaf chlorophyll content.
    Zhang J; Huang W; Zhou Q
    PLoS One; 2014; 9(11):e110812. PubMed ID: 25365207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.