These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38020674)

  • 21. RAPD analysis reveals low genetic variability in the endangered light-footed clapper rail.
    Nusser JA; Goto RM; Ledig DB; Fleischer RC; Miller MM
    Mol Ecol; 1996 Aug; 5(4):463-72. PubMed ID: 8794557
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative acoustic differentiation of cryptic species illustrated with King and Clapper rails.
    Stiffler LL; Schroeder KM; Anderson JT; McRae SB; Katzner TE
    Ecol Evol; 2018 Dec; 8(24):12821-12831. PubMed ID: 30619585
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interclutch variability in egg characteristics in two species of rail: Is maternal identity encoded in eggshell patterns?
    Johnson EW; McRae SB
    PLoS One; 2022; 17(1):e0261868. PubMed ID: 35025922
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Five new extinct species of rails (Aves: Gruiformes: Rallidae) from the Macaronesian Islands (North Atlantic Ocean).
    Alcover JA; Pieper H; Pereira F; Rando JC
    Zootaxa; 2015 Dec; 4057(2):151-90. PubMed ID: 26701473
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impacts of adjacent land use and isolation on marsh bird communities.
    Smith LA; Chow-Fraser P
    Environ Manage; 2010 May; 45(5):1040-51. PubMed ID: 20358198
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Food web analysis of southern California coastal wetlands using multiple stable isotopes.
    Kwak TJ; Zedler JB
    Oecologia; 1997 Apr; 110(2):262-277. PubMed ID: 28307434
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flightlessness and phylogeny amongst endemic rails (Aves:Rallidae) of the New Zealand region.
    Trewick SA
    Philos Trans R Soc Lond B Biol Sci; 1997 Apr; 352(1352):429-46. PubMed ID: 9163823
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The adaptive value of habitat preferences from a multi-scale spatial perspective: insights from marsh-nesting avian species.
    Jedlikowski J; Brambilla M
    PeerJ; 2017; 5():e3164. PubMed ID: 28367380
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A robust-design formulation of the incidence function model of metapopulation dynamics applied to two species of rails.
    Risk BB; De Valpine P; Beissinger SR
    Ecology; 2011 Feb; 92(2):462-74. PubMed ID: 21618925
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Another new species of flightless Rail (Aves: Rallidae: Rallus) from Abaco, The Bahamas.
    Takano OM; Steadman DW
    Zootaxa; 2018 Apr; 4407(3):376-382. PubMed ID: 29690183
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting the distribution of a rare chipmunk (
    Perkins-Taylor IE; Frey JK
    J Mammal; 2020 Aug; 101(4):1035-1048. PubMed ID: 33033469
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The rescue effect and inference from isolation-extinction relationships.
    Van Schmidt ND; Beissinger SR
    Ecol Lett; 2020 Apr; 23(4):598-606. PubMed ID: 31981448
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inferring the timing of long-distance dispersal between Rail metapopulations using genetic and isotopic assignments.
    Hall LA; Beissinger SR
    Ecol Appl; 2017 Jan; 27(1):208-218. PubMed ID: 28052492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Habitat heterogeneity captured by 30-m resolution satellite image texture predicts bird richness across the United States.
    Farwell LS; Elsen PR; Razenkova E; Pidgeon AM; Radeloff VC
    Ecol Appl; 2020 Dec; 30(8):e02157. PubMed ID: 32358975
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detection and density of breeding marsh birds in Iowa wetlands.
    Vanausdall RA; Dinsmore SJ
    PLoS One; 2020; 15(1):e0227825. PubMed ID: 31978167
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wetland hydropattern and vegetation greenness predict avian populations in Palo Verde, Costa Rica.
    Barchiesi S; Alonso A; Pazmiño-Hernandez M; Serrano-Sandí JM; Muñoz-Carpena R; Angelini C
    Ecol Appl; 2022 Mar; 32(2):e2493. PubMed ID: 34773674
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monitoring an ungagged coastal marsh to analyze the salinity interaction of the marsh with Lake Erie.
    Khadka P; Sharma S; Mathis T
    Environ Monit Assess; 2021 Sep; 193(10):645. PubMed ID: 34514553
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Water level changes in Lake Erie drive 21st century CO
    Morin TH; Riley WJ; Grant RF; Mekonnen Z; Stefanik KC; Sanchez ACR; Mulhare MA; Villa J; Wrighton K; Bohrer G
    Sci Total Environ; 2022 May; 821():153087. PubMed ID: 35038507
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrating social and ecological data to model metapopulation dynamics in coupled human and natural systems.
    Van Schmidt ND; Kovach T; Kilpatrick AM; Oviedo JL; Huntsinger L; Hruska T; Miller NL; Beissinger SR
    Ecology; 2019 Jun; 100(6):e02711. PubMed ID: 30927267
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Marine fauna sort at fine resolution in an ecotone of shifting wetland foundation species.
    Johnston CA; Gruner DS
    Ecology; 2018 Nov; 99(11):2546-2557. PubMed ID: 30168591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.