These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38020888)

  • 1. Relation between learning process and morphology of transport tube network in plasmodium of
    Yoneoka E; Takamatsu A
    Front Cell Dev Biol; 2023; 11():1249165. PubMed ID: 38020888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Habituation in non-neural organisms: evidence from slime moulds.
    Boisseau RP; Vogel D; Dussutour A
    Proc Biol Sci; 2016 Apr; 283(1829):. PubMed ID: 27122563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Memory inception and preservation in slime moulds: the quest for a common mechanism.
    Boussard A; Delescluse J; PĂ©rez-Escudero A; Dussutour A
    Philos Trans R Soc Lond B Biol Sci; 2019 Jun; 374(1774):20180368. PubMed ID: 31006372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environment-dependent morphology in plasmodium of true slime mold Physarum polycephalum and a network growth model.
    Takamatsu A; Takaba E; Takizawa G
    J Theor Biol; 2009 Jan; 256(1):29-44. PubMed ID: 18929578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kanizsa illusory contours appearing in the plasmodium pattern of Physarum polycephalum.
    Tani I; Yamachiyo M; Shirakawa T; Gunji YP
    Front Cell Infect Microbiol; 2014; 4():10. PubMed ID: 24616883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Traffic optimization in railroad networks using an algorithm mimicking an amoeba-like organism, Physarum plasmodium.
    Watanabe S; Tero A; Takamatsu A; Nakagaki T
    Biosystems; 2011 Sep; 105(3):225-32. PubMed ID: 21620930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mathematical model for adaptive transport network in path finding by true slime mold.
    Tero A; Kobayashi R; Nakagaki T
    J Theor Biol; 2007 Feb; 244(4):553-64. PubMed ID: 17069858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmodial vein networks of the slime mold Physarum polycephalum form regular graphs.
    Baumgarten W; Ueda T; Hauser MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046113. PubMed ID: 21230351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the role of the plasmodial cytoskeleton in facilitating intelligent behavior in slime mold Physarum polycephalum.
    Mayne R; Adamatzky A; Jones J
    Commun Integr Biol; 2015; 8(4):e1059007. PubMed ID: 26478782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of interaction strength in a network of the true slime mold by a microfabricated structure.
    Takamatsu A; Fujii T; Endo I
    Biosystems; 2000 Feb; 55(1-3):33-8. PubMed ID: 10745106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amoeba-based computing for traveling salesman problem: long-term correlations between spatially separated individual cells of Physarum polycephalum.
    Zhu L; Aono M; Kim SJ; Hara M
    Biosystems; 2013 Apr; 112(1):1-10. PubMed ID: 23438635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant hairy root cultures as plasmodium modulators of the slime mold emergent computing substrate Physarum polycephalum.
    Ricigliano V; Chitaman J; Tong J; Adamatzky A; Howarth DG
    Front Microbiol; 2015; 6():720. PubMed ID: 26236301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rebuilding Iberian motorways with slime mould.
    Adamatzky A; Alonso-Sanz R
    Biosystems; 2011 Jul; 105(1):89-100. PubMed ID: 21530610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decision-making ability of Physarum polycephalum enhanced by its coordinated spatiotemporal oscillatory dynamics.
    Iwayama K; Zhu L; Hirata Y; Aono M; Hara M; Aihara K
    Bioinspir Biomim; 2016 Apr; 11(3):036001. PubMed ID: 27070463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. THE CHANGING PATTERN OF BIREFRINGENCE IN PLASMODIA OF THE SLIME MOLD, PHYSARUM POLYCEPHALUM.
    NAKAJIMA H; ALLEN RD
    J Cell Biol; 1965 May; 25(2):361-74. PubMed ID: 14287186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the chemotaxis behavior of Physarum polycephalum to a range of simple volatile organic chemicals.
    de Lacy Costello BP; Adamatzky AI
    Commun Integr Biol; 2013 Sep; 6(5):e25030. PubMed ID: 24265848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A revised model of fluid transport optimization in Physarum polycephalum.
    Bonifaci V
    J Math Biol; 2017 Feb; 74(3):567-581. PubMed ID: 27289474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolving Transport Networks With Cellular Automata Models Inspired by Slime Mould.
    Tsompanas MA; Sirakoulis GCh; Adamatzky AI
    IEEE Trans Cybern; 2015 Sep; 45(9):1887-99. PubMed ID: 25438333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emergence of morphological order in the network formation of Physarum polycephalum.
    Shirakawa T; Gunji YP
    Biophys Chem; 2007 Jul; 128(2-3):253-60. PubMed ID: 17513034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of noise in self-organized decision making by the true slime mold Physarum polycephalum.
    Meyer B; Ansorge C; Nakagaki T
    PLoS One; 2017; 12(3):e0172933. PubMed ID: 28355213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.