BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 38020969)

  • 1. Context-dependent neocentromere activity in synthetic yeast chromosome
    Lauer S; Luo J; Lazar-Stefanita L; Zhang W; McCulloch LH; Fanfani V; Lobzaev E; Haase MAB; Easo N; Zhao Y; Yu F; Cai J; ; Bader JS; Stracquadanio G; Boeke JD
    Cell Genom; 2023 Nov; 3(11):100437. PubMed ID: 38020969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic genome engineering forging new frontiers for wine yeast.
    Pretorius IS
    Crit Rev Biotechnol; 2017 Feb; 37(1):112-136. PubMed ID: 27535766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic and Epigenetic Foundations of Neocentromere Formation.
    DeBose-Scarlett EM; Sullivan BA
    Annu Rev Genet; 2021 Nov; 55():331-348. PubMed ID: 34496611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Total synthesis of a eukaryotic chromosome: Redesigning and SCRaMbLE-ing yeast.
    Jovicevic D; Blount BA; Ellis T
    Bioessays; 2014 Sep; 36(9):855-60. PubMed ID: 25048260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional selection for the centromere DNA from yeast chromosome VIII.
    Fleig U; Beinhauer JD; Hegemann JH
    Nucleic Acids Res; 1995 Mar; 23(6):922-4. PubMed ID: 7731804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome characterization and CRISPR-Cas9 editing of a human neocentromere.
    Palazzo A; Piccolo I; Minervini CF; Purgato S; Capozzi O; D'Addabbo P; Cumbo C; Albano F; Rocchi M; Catacchio CR
    Chromosoma; 2022 Dec; 131(4):239-251. PubMed ID: 35978051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA deformability changes of single base pair mutants within CDE binding sites in S. Cerevisiae centromere DNA correlate with measured chromosomal loss rates and CDE binding site symmetries.
    Hennemuth B; Marx KA
    BMC Mol Biol; 2006 Mar; 7():12. PubMed ID: 16542422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neocentromeres Provide Chromosome Segregation Accuracy and Centromere Clustering to Multiple Loci along a Candida albicans Chromosome.
    Burrack LS; Hutton HF; Matter KJ; Clancey SA; Liachko I; Plemmons AE; Saha A; Power EA; Turman B; Thevandavakkam MA; Ay F; Dunham MJ; Berman J
    PLoS Genet; 2016 Sep; 12(9):e1006317. PubMed ID: 27662467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A spotlight on global collaboration in the Sc2.0 yeast consortium.
    Dai J; Yang H; Pretorius IS; Cai Y; Shen CY; Chang M; Yuan Y
    Cell Genom; 2023 Nov; 3(11):100441. PubMed ID: 38020973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo analysis of the Saccharomyces cerevisiae centromere CDEIII sequence: requirements for mitotic chromosome segregation.
    Jehn B; Niedenthal R; Hegemann JH
    Mol Cell Biol; 1991 Oct; 11(10):5212-21. PubMed ID: 1922041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Centromere deletion in
    Schotanus K; Heitman J
    Elife; 2020 Apr; 9():. PubMed ID: 32310085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetically-inherited centromere and neocentromere DNA replicates earliest in S-phase.
    Koren A; Tsai HJ; Tirosh I; Burrack LS; Barkai N; Berman J
    PLoS Genet; 2010 Aug; 6(8):e1001068. PubMed ID: 20808889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic Engineering and Synthetic Genomics in Yeast to Understand Life and Boost Biotechnology.
    Schindler D
    Bioengineering (Basel); 2020 Oct; 7(4):. PubMed ID: 33138080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular cytogenetic analysis of eight inversion duplications of human chromosome 13q that each contain a neocentromere.
    Warburton PE; Dolled M; Mahmood R; Alonso A; Li S; Naritomi K; Tohma T; Nagai T; Hasegawa T; Ohashi H; Govaerts LC; Eussen BH; Van Hemel JO; Lozzio C; Schwartz S; Dowhanick-Morrissette JJ; Spinner NB; Rivera H; Crolla JA; Yu C; Warburton D
    Am J Hum Genet; 2000 Jun; 66(6):1794-806. PubMed ID: 10777715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neocentromeres in 15q24-26 map to duplicons which flanked an ancestral centromere in 15q25.
    Ventura M; Mudge JM; Palumbo V; Burn S; Blennow E; Pierluigi M; Giorda R; Zuffardi O; Archidiacono N; Jackson MS; Rocchi M
    Genome Res; 2003 Sep; 13(9):2059-68. PubMed ID: 12915487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetic dynamics of centromeres and neocentromeres in Cryptococcus deuterogattii.
    Schotanus K; Yadav V; Heitman J
    PLoS Genet; 2021 Aug; 17(8):e1009743. PubMed ID: 34464380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of a synthetic Saccharomyces cerevisiae pan-genome neo-chromosome.
    Kutyna DR; Onetto CA; Williams TC; Goold HD; Paulsen IT; Pretorius IS; Johnson DL; Borneman AR
    Nat Commun; 2022 Jun; 13(1):3628. PubMed ID: 35750675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Saccharomyces cerevisiae SCRaMbLE system and genome minimization.
    Dymond J; Boeke J
    Bioeng Bugs; 2012; 3(3):168-71. PubMed ID: 22572789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromosomal Rearrangements of Synthetic Yeast by SCRaMbLE.
    Luo Z; Jiang S; Dai J
    Methods Mol Biol; 2021; 2196():153-165. PubMed ID: 32889719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yeast 2.0-connecting the dots in the construction of the world's first functional synthetic eukaryotic genome.
    Pretorius IS; Boeke JD
    FEMS Yeast Res; 2018 Jun; 18(4):. PubMed ID: 29648592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.