These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38021231)

  • 1. Influence of spatial frequency in visual stimuli for cVEP-based BCIs: evaluation of performance and user experience.
    Fernández-Rodríguez Á; Martínez-Cagigal V; Santamaría-Vázquez E; Ron-Angevin R; Hornero R
    Front Hum Neurosci; 2023; 17():1288438. PubMed ID: 38021231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing spatial properties of a new checkerboard-like visual stimulus for user-friendly SSVEP-based BCIs.
    Ming G; Pei W; Chen H; Gao X; Wang Y
    J Neural Eng; 2021 Oct; 18(5):. PubMed ID: 34544060
    [No Abstract]   [Full Text] [Related]  

  • 3. Towards solving of the Illiteracy phenomenon for VEP-based brain-computer interfaces.
    Volosyak I; Rezeika A; Benda M; Gembler F; Stawicki P
    Biomed Phys Eng Express; 2020 May; 6(3):035034. PubMed ID: 33438679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tradeoff between User Experience and BCI Classification Accuracy with Frequency Modulated Steady-State Visual Evoked Potentials.
    Dreyer AM; Herrmann CS; Rieger JW
    Front Hum Neurosci; 2017; 11():391. PubMed ID: 28798676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Burst c-VEP Based BCI: Optimizing stimulus design for enhanced classification with minimal calibration data and improved user experience.
    Cabrera Castillos K; Ladouce S; Darmet L; Dehais F
    Neuroimage; 2023 Dec; 284():120446. PubMed ID: 37949256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Density Electroencephalogram Facilitates the Detection of Small Stimuli in Code-Modulated Visual Evoked Potential Brain-Computer Interfaces.
    Sun Q; Zhang S; Dong G; Pei W; Gao X; Wang Y
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of Checkerboard Spatial Frequencies for Steady-State Visual Evoked Potential Brain-Computer Interfaces.
    Waytowich NR; Yamani Y; Krusienski DJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):557-565. PubMed ID: 27542113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. VEP-based brain-computer interfaces modulated by Golay complementary series for improving performance.
    Wei Q; Huang Y; Li M; Lu Z
    Technol Health Care; 2016 Apr; 24 Suppl 2():S541-9. PubMed ID: 27163316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new grid stimulus with subtle flicker perception for user-friendly SSVEP-based BCIs.
    Ming G; Zhong H; Pei W; Gao X; Wang Y
    J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36827704
    [No Abstract]   [Full Text] [Related]  

  • 10. Spatial decoupling of targets and flashing stimuli for visual brain-computer interfaces.
    Waytowich NR; Krusienski DJ
    J Neural Eng; 2015 Jun; 12(3):036006. PubMed ID: 25875047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An electrocorticographic BCI using code-based VEP for control in video applications: a single-subject study.
    Kapeller C; Kamada K; Ogawa H; Prueckl R; Scharinger J; Guger C
    Front Syst Neurosci; 2014; 8():139. PubMed ID: 25147509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulus Specificity of Brain-Computer Interfaces Based on Code Modulation Visual Evoked Potentials.
    Wei Q; Feng S; Lu Z
    PLoS One; 2016; 11(5):e0156416. PubMed ID: 27243454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing Stimulus Frequency Ranges for Building a High-Rate High Frequency SSVEP-BCI.
    Chen X; Liu B; Wang Y; Cui H; Dong J; Ma R; Li N; Gao X
    IEEE Trans Neural Syst Rehabil Eng; 2023 Feb; PP():. PubMed ID: 37022899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces.
    Chang MH; Baek HJ; Lee SM; Park KS
    Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Visual Stimuli for Steady-State Visual Evoked Potential-Based Brain-Computer Interfaces in Virtual Reality Environment in terms of Classification Accuracy and Visual Comfort.
    Choi KM; Park S; Im CH
    Comput Intell Neurosci; 2019; 2019():9680697. PubMed ID: 31354804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic time window mechanism for time synchronous VEP-based BCIs-Performance evaluation with a dictionary-supported BCI speller employing SSVEP and c-VEP.
    Gembler F; Stawicki P; Saboor A; Volosyak I
    PLoS One; 2019; 14(6):e0218177. PubMed ID: 31194817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on transient VEP-based brain-computer interface using non-direct gazed visual stimuli.
    Yoshimura N; Itakura N
    Electromyogr Clin Neurophysiol; 2008; 48(1):43-51. PubMed ID: 18338534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain-computer interfaces based on code-modulated visual evoked potentials (c-VEP): a literature review.
    Martínez-Cagigal V; Thielen J; Santamaría-Vázquez E; Pérez-Velasco S; Desain P; Hornero R
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34763331
    [No Abstract]   [Full Text] [Related]  

  • 19. A sub-region combination scheme for spatial coding in a high-frequency SSVEP-based BCI.
    Hu R; Ming G; Wang Y; Gao X
    J Neural Eng; 2023 Jul; 20(4):. PubMed ID: 37467742
    [No Abstract]   [Full Text] [Related]  

  • 20. A Hybrid Speller Design Using Eye Tracking and SSVEP Brain-Computer Interface.
    Mannan MMN; Kamran MA; Kang S; Choi HS; Jeong MY
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32046131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.