These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38021231)

  • 21. Comparison of Modern Highly Interactive Flicker-Free Steady State Motion Visual Evoked Potentials for Practical Brain-Computer Interfaces.
    Stawicki P; Volosyak I
    Brain Sci; 2020 Sep; 10(10):. PubMed ID: 32998379
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stimulus Design for Visual Evoked Potential Based Brain-Computer Interfaces.
    Xu H; Hsu SH; Nakanishi M; Lin Y; Jung TP; Cauwenberghs G
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2545-2551. PubMed ID: 37262122
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A high-performance SSVEP-based BCI using imperceptible flickers.
    Ming G; Pei W; Gao X; Wang Y
    J Neural Eng; 2023 Feb; 20(1):. PubMed ID: 36669202
    [No Abstract]   [Full Text] [Related]  

  • 24. Highly Interactive Brain-Computer Interface Based on Flicker-Free Steady-State Motion Visual Evoked Potential.
    Han C; Xu G; Xie J; Chen C; Zhang S
    Sci Rep; 2018 Apr; 8(1):5835. PubMed ID: 29643430
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toward New Modalities in VEP-Based BCI Applications Using Dynamical Stimuli: Introducing Quasi-Periodic and Chaotic VEP-Based BCI.
    Shirzhiyan Z; Keihani A; Farahi M; Shamsi E; GolMohammadi M; Mahnam A; Haidari MR; Jafari AH
    Front Neurosci; 2020; 14():534619. PubMed ID: 33328841
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel visual brain-computer interfaces paradigm based on evoked related potentials evoked by weak and small number of stimuli.
    Xiao X; Gao R; Zhou X; Yi W; Xu F; Wang K; Xu M; Ming D
    Front Neurosci; 2023; 17():1178283. PubMed ID: 37342465
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of stimulus number on the recognition accuracy and information transfer rate of SSVEP-BCI in augmented reality.
    Zhang R; Xu Z; Zhang L; Cao L; Hu Y; Lu B; Shi L; Yao D; Zhao X
    J Neural Eng; 2022 May; 19(3):. PubMed ID: 35477130
    [No Abstract]   [Full Text] [Related]  

  • 28. A multi-target brain-computer interface based on code modulated visual evoked potentials.
    Liu Y; Wei Q; Lu Z
    PLoS One; 2018; 13(8):e0202478. PubMed ID: 30118504
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A BCI Gaze Sensing Method Using Low Jitter Code Modulated VEP.
    Kaya I; Bohórquez J; Özdamar Ö
    Sensors (Basel); 2019 Sep; 19(17):. PubMed ID: 31480734
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toward a hybrid brain-computer interface based on repetitive visual stimuli with missing events.
    Wu Y; Li M; Wang J
    J Neuroeng Rehabil; 2016 Jul; 13(1):66. PubMed ID: 27460070
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combining brain-computer interfaces and multiplayer video games: an application based on c-VEPs.
    Moreno-Calderón S; Martínez-Cagigal V; Santamaría-Vázquez E; Pérez-Velasco S; Marcos-Martínez D; Hornero R
    Front Hum Neurosci; 2023; 17():1227727. PubMed ID: 37600556
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neural decoding of code modulated visual evoked potentials by spatio-temporal inverse filtering for brain computer interfaces.
    Sato JI; Washizawa Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1484-1487. PubMed ID: 28268607
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Online adaptation of a c-VEP Brain-computer Interface(BCI) based on error-related potentials and unsupervised learning.
    Spüler M; Rosenstiel W; Bogdan M
    PLoS One; 2012; 7(12):e51077. PubMed ID: 23236433
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel hybrid visual stimuli incorporating periodic motions into conventional flickering or pattern-reversal visual stimuli for steady-state visual evoked potential-based brain-computer interfaces.
    Kwon J; Hwang J; Nam H; Im CH
    Front Neuroinform; 2022; 16():997068. PubMed ID: 36213545
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancing Performance and Bit Rates in a Brain-Computer Interface System With Phase-to-Amplitude Cross-Frequency Coupling: Evidences From Traditional c-VEP, Fast c-VEP, and SSVEP Designs.
    Dimitriadis SI; Marimpis AD
    Front Neuroinform; 2018; 12():19. PubMed ID: 29867425
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of stimulation frequency and stimulation waveform on steady-state visual evoked potentials using a computer monitor.
    Chen X; Wang Y; Zhang S; Xu S; Gao X
    J Neural Eng; 2019 Oct; 16(6):066007. PubMed ID: 31220820
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A 120-target brain-computer interface based on code-modulated visual evoked potentials.
    Sun Q; Zheng L; Pei W; Gao X; Wang Y
    J Neurosci Methods; 2022 Jun; 375():109597. PubMed ID: 35427686
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Hybrid Brain-Computer Interface Based on Visual Evoked Potential and Pupillary Response.
    Jiang L; Li X; Pei W; Gao X; Wang Y
    Front Hum Neurosci; 2022; 16():834959. PubMed ID: 35185500
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A brain-computer interface based on high-frequency steady-state asymmetric visual evoked potentials
    Yue L; Xiao X; Xu M; Chen L; Wang Y; Jung TP; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3090-3093. PubMed ID: 33018658
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel Hybrid Brain-Computer Interface for Virtual Reality Applications Using Steady-State Visual-Evoked Potential-Based Brain-Computer Interface and Electrooculogram-Based Eye Tracking for Increased Information Transfer Rate.
    Ha J; Park S; Im CH
    Front Neuroinform; 2022; 16():758537. PubMed ID: 35281718
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.