These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 3802222)
21. A neuroprotective role of glial cell line-derived neurotrophic factor following moderate spinal cord contusion injury. Iannotti C; Ping Zhang Y; Shields CB; Han Y; Burke DA; Xu XM Exp Neurol; 2004 Oct; 189(2):317-32. PubMed ID: 15380482 [TBL] [Abstract][Full Text] [Related]
22. Axonal changes in spinal cord injured patients distal to the site of injury. Lin CS; Macefield VG; Elam M; Wallin BG; Engel S; Kiernan MC Brain; 2007 Apr; 130(Pt 4):985-94. PubMed ID: 17264094 [TBL] [Abstract][Full Text] [Related]
23. Neuronal loss and expression of neurotrophic factors in a model of rat chronic compressive spinal cord injury. Kasahara K; Nakagawa T; Kubota T Spine (Phila Pa 1976); 2006 Aug; 31(18):2059-66. PubMed ID: 16915089 [TBL] [Abstract][Full Text] [Related]
24. [Changes of somatosensory and transcranial magnetic stimulation motor evoked potentials in experimental spinal cord injury]. Hou Y; Nie L; Liu LH; Shao J; Yuan YJ Zhonghua Yi Xue Za Zhi; 2008 Mar; 88(11):773-7. PubMed ID: 18683688 [TBL] [Abstract][Full Text] [Related]
25. Carbon monoxide-releasing molecule tricarbonyldichlororuthenium (II) dimer induces concentration-dependent alterations in the electrophysiological properties of axons in mammalian spinal cord. Davies AL; Kramer JL; Hayes KC Neuroscience; 2008 Feb; 151(4):1104-11. PubMed ID: 18248914 [TBL] [Abstract][Full Text] [Related]
26. Contribution of fast and slow conducting myelinated axons to single-peak compound action potentials in rat spinal cord white matter preparations. Velumian AA; Wan Y; Samoilova M; Fehlings MG J Neurophysiol; 2011 Feb; 105(2):929-41. PubMed ID: 21148097 [TBL] [Abstract][Full Text] [Related]
27. Immediate consequences of spinal cord injury: possible role of potassium in axonal conduction block. Eidelberg E; Sullivan J; Brigham A Surg Neurol; 1975 Jun; 3(6):317-21. PubMed ID: 1162585 [TBL] [Abstract][Full Text] [Related]
28. Experimental spinal cord injury: spatiotemporal characterization of elemental concentrations and water contents in axons and neuroglia. LoPachin RM; Gaughan CL; Lehning EJ; Kaneko Y; Kelly TM; Blight A J Neurophysiol; 1999 Nov; 82(5):2143-53. PubMed ID: 10561394 [TBL] [Abstract][Full Text] [Related]
29. Study of spinal cord evoked injury potential by use of computer modeling and in dogs with naturally acquired thoracolumbar spinal cord compression. Poncelet L; Michaux C; Balligand M Am J Vet Res; 1998 Mar; 59(3):300-6. PubMed ID: 9522949 [TBL] [Abstract][Full Text] [Related]
30. In vitro spinal cord conduction block during exposure to a xanthine oxidase/hypoxanthine system: noninvolvement of superoxide and hydrogen peroxide. Ridella SA; Pederson TC; Anderson TE J Neurotrauma; 1989; 6(1):1-11. PubMed ID: 2547077 [TBL] [Abstract][Full Text] [Related]
31. Axonal physiology of chronic spinal cord injury in the cat: intracellular recording in vitro. Blight AR Neuroscience; 1983 Dec; 10(4):1471-86. PubMed ID: 6664497 [TBL] [Abstract][Full Text] [Related]
32. Conductivity of dorsal column fibers during experimental spinal cord compression and after decompression at various stimulus frequencies. Sakatani K; Ohta T; Shimo-Oku M Cent Nerv Syst Trauma; 1987; 4(3):161-79. PubMed ID: 3442815 [TBL] [Abstract][Full Text] [Related]
33. Reflex activity and axonal conduction in the L-7 spinal cord segment following experimental compression trauma. Nacimiento AC; Bartels M; Herrmann HD; Loew F J Neurosurg; 1985 Jun; 62(6):898-905. PubMed ID: 3998842 [TBL] [Abstract][Full Text] [Related]
35. [A chronic spinal cord compression model in a rat with a 354A tumor]. Izumida M Nihon Seikeigeka Gakkai Zasshi; 1995 Oct; 69(10):977-91. PubMed ID: 8551099 [TBL] [Abstract][Full Text] [Related]
36. Stretch along the craniocaudal axis improves shape recoverability of the spinal cord. Ozawa H; Matsumoto T; Ohashi T; Sato M; Itoi E J Biomech; 2011 Aug; 44(12):2313-5. PubMed ID: 21722907 [TBL] [Abstract][Full Text] [Related]
37. The effect of flash freezing on variability in spinal cord compression behavior. Sparrey CJ; Keaveny TM J Biomech Eng; 2009 Nov; 131(11):111010. PubMed ID: 20353261 [TBL] [Abstract][Full Text] [Related]
38. Validity of transcranial motor evoked potentials as early indicators of neural compromise in rat model of spinal cord compression. Morris SH; Howard JJ; Rasmusson DD; El-Hawary R Spine (Phila Pa 1976); 2015 Apr; 40(8):E492-7. PubMed ID: 25868103 [TBL] [Abstract][Full Text] [Related]
39. [Excitatory and inhibitory processes in the spinal cord in alcoholic intoxication]. Khudaverdian DN; Gambarian AK; Asratian AA; Safarian LA Fiziol Zh SSSR Im I M Sechenova; 1989 Jul; 75(7):911-6. PubMed ID: 2806666 [TBL] [Abstract][Full Text] [Related]
40. Spinal cord contusion injury: experimental dissociation of hemorrhagic necrosis and subacute loss of axonal conduction. Anderson TE J Neurosurg; 1985 Jan; 62(1):115-9. PubMed ID: 3964842 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]