These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 38022538)

  • 1. Zinc deficiency impairs axonal regeneration and functional recovery after spinal cord injury by modulating macrophage polarization via NF-κB pathway.
    Kijima K; Ono G; Kobayakawa K; Saiwai H; Hara M; Yoshizaki S; Yokota K; Saito T; Tamaru T; Iura H; Haruta Y; Kitade K; Utsunomiya T; Konno D; Edgerton VR; Liu CY; Sakai H; Maeda T; Kawaguchi K; Matsumoto Y; Okada S; Nakashima Y
    Front Immunol; 2023; 14():1290100. PubMed ID: 38022538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geniposide exerts protective effects on spinal cord injury in rats by inhibiting the IKKs/NF-κB signaling pathway.
    Li Y; Qiu H; Yao S; Li Q; Ding Y; Cao Y; Chen X; Zhu X
    Int Immunopharmacol; 2021 Nov; 100():108158. PubMed ID: 34555642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Valproic acid attenuates traumatic spinal cord injury-induced inflammation via STAT1 and NF-κB pathway dependent of HDAC3.
    Chen S; Ye J; Chen X; Shi J; Wu W; Lin W; Lin W; Li Y; Fu H; Li S
    J Neuroinflammation; 2018 May; 15(1):150. PubMed ID: 29776446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photobiomodulation Attenuates Neurotoxic Polarization of Macrophages by Inhibiting the Notch1-HIF-1α/NF-κB Signalling Pathway in Mice With Spinal Cord Injury.
    Ma Y; Li P; Ju C; Zuo X; Li X; Ding T; Liang Z; Zhang J; Li K; Wang X; Zhu Z; Zhang Z; Song Z; Quan H; Hu X; Wang Z
    Front Immunol; 2022; 13():816952. PubMed ID: 35371065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quercetin prevents necroptosis of oligodendrocytes by inhibiting macrophages/microglia polarization to M1 phenotype after spinal cord injury in rats.
    Fan H; Tang HB; Shan LQ; Liu SC; Huang DG; Chen X; Chen Z; Yang M; Yin XH; Yang H; Hao DJ
    J Neuroinflammation; 2019 Nov; 16(1):206. PubMed ID: 31699098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Curcumin-activated Olfactory Ensheathing Cells Improve Functional Recovery After Spinal Cord Injury by Modulating Microglia Polarization Through APOE/TREM2/NF-κB Signaling Pathway.
    Jiang C; Chen Z; Wang X; Zhang Y; Guo X; Fan H; Huang D; He Y; Tang X; Ai Y; Liu Y; Yang H; Hao D
    J Neuroimmune Pharmacol; 2023 Sep; 18(3):476-494. PubMed ID: 37658943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibiting RGS1 attenuates secondary inflammation response and tissue degradation via the TLR/TRIF/NF-κB pathway in macrophage post spinal cord injury.
    Feng D; Yu J; Bao L; Fan D; Zhang B
    Neurosci Lett; 2022 Jan; 768():136374. PubMed ID: 34852285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recombinant fibroblast growth factor 4 ameliorates axonal regeneration and functional recovery in acute spinal cord injury through altering microglia/macrophage phenotype.
    Li R; Feng J; Li L; Luo G; Shi Y; Shen S; Yuan X; Wu J; Yan B; Yang L
    Int Immunopharmacol; 2024 Jun; 134():112188. PubMed ID: 38728880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sting is a critical regulator of spinal cord injury by regulating microglial inflammation via interacting with TBK1 in mice.
    Wang YY; Shen D; Zhao LJ; Zeng N; Hu TH
    Biochem Biophys Res Commun; 2019 Oct; 517(4):741-748. PubMed ID: 31400857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Naringin may promote functional recovery following spinal cord injury by modulating microglial polarization through the PPAR-γ/NF-κB signaling pathway.
    Li B; Mei XF
    Brain Res; 2023 Dec; 1821():148563. PubMed ID: 37661010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The NF-κB Pathway: a Focus on Inflammatory Responses in Spinal Cord Injury.
    Ding Y; Chen Q
    Mol Neurobiol; 2023 Sep; 60(9):5292-5308. PubMed ID: 37286724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibiting HMGB1-RAGE axis prevents pro-inflammatory macrophages/microglia polarization and affords neuroprotection after spinal cord injury.
    Fan H; Tang HB; Chen Z; Wang HQ; Zhang L; Jiang Y; Li T; Yang CF; Wang XY; Li X; Wu SX; Zhang GL
    J Neuroinflammation; 2020 Oct; 17(1):295. PubMed ID: 33036632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelial progenitor cell-derived exosomes promote anti-inflammatory macrophages via SOCS3/JAK2/STAT3 axis and improve the outcome of spinal cord injury.
    Yuan F; Peng W; Yang Y; Xu J; Liu Y; Xie Y; Huang T; Shi C; Ding Y; Li C; Qin T; Xie S; Zhu F; Lu H; Huang J; Hu J
    J Neuroinflammation; 2023 Jun; 20(1):156. PubMed ID: 37391774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SARM1 promotes neuroinflammation and inhibits neural regeneration after spinal cord injury through NF-κB signaling.
    Liu H; Zhang J; Xu X; Lu S; Yang D; Xie C; Jia M; Zhang W; Jin L; Wang X; Shen X; Li F; Wang W; Bao X; Li S; Zhu M; Wang W; Wang Y; Huang Z; Teng H
    Theranostics; 2021; 11(9):4187-4206. PubMed ID: 33754056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNA-182 improves spinal cord injury in mice by modulating apoptosis and the inflammatory response via IKKβ/NF-κB.
    Fei M; Li Z; Cao Y; Jiang C; Lin H; Chen Z
    Lab Invest; 2021 Sep; 101(9):1238-1253. PubMed ID: 34059758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone marrow mesenchymal stem cells-derived exosomes reduce apoptosis and inflammatory response during spinal cord injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway.
    Fan L; Dong J; He X; Zhang C; Zhang T
    Hum Exp Toxicol; 2021 Oct; 40(10):1612-1623. PubMed ID: 33779331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tranexamic acid reduces heme cytotoxicity via the TLR4/TNF axis and ameliorates functional recovery after spinal cord injury.
    Yoshizaki S; Kijima K; Hara M; Saito T; Tamaru T; Tanaka M; Konno DJ; Nakashima Y; Okada S
    J Neuroinflammation; 2019 Jul; 16(1):160. PubMed ID: 31358003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photobiomodulation promotes spinal cord injury repair by inhibiting macrophage polarization through lncRNA TUG1-miR-1192/TLR3 axis.
    Ju C; Ma Y; Zuo X; Wang X; Song Z; Zhang Z; Zhu Z; Li X; Liang Z; Ding T; Hu X; Wang Z
    Cell Mol Biol Lett; 2023 Jan; 28(1):5. PubMed ID: 36658478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced oxidation protein products induce microglia-mediated neuroinflammation via MAPKs-NF-κB signaling pathway and pyroptosis after secondary spinal cord injury.
    Liu Z; Yao X; Jiang W; Li W; Zhu S; Liao C; Zou L; Ding R; Chen J
    J Neuroinflammation; 2020 Mar; 17(1):90. PubMed ID: 32192500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ang-(1-7)/MasR axis promotes functional recovery after spinal cord injury by regulating microglia/macrophage polarization.
    Gu G; Zhu B; Ren J; Song X; Fan B; Ding H; Shang J; Wu H; Li J; Wang H; Li J; Wei Z; Feng S
    Cell Biosci; 2023 Feb; 13(1):23. PubMed ID: 36739421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.