BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 38023529)

  • 1. EPR spin trapping of nucleophilic and radical reactions at colloidal metal chalcogenide quantum dot surfaces.
    Aschendorf CJ; Degbevi M; Prather KV; Tsui EY
    Chem Sci; 2023 Nov; 14(45):13080-13089. PubMed ID: 38023529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. II-VI core/shell quantum dots and doping with transition metal ions as a means of tuning the magnetoelectronic properties of CdS/ZnS core/shell QDs: A DFT study.
    Malik P; Thareja R; Singh J; Kakkar R
    J Mol Graph Model; 2022 Mar; 111():108099. PubMed ID: 34871980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dynamic surface chemistry of colloidal metal chalcogenide quantum dots.
    Grisorio R; Quarta D; Fiore A; Carbone L; Suranna GP; Giansante C
    Nanoscale Adv; 2019 Sep; 1(9):3639-3646. PubMed ID: 36133571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Contributions to Mn(2+) Spin Dynamics in Colloidal Doped Quantum Dots.
    Schimpf AM; Ochsenbein ST; Gamelin DR
    J Phys Chem Lett; 2015 Feb; 6(3):457-63. PubMed ID: 26261963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diorganyl dichalcogenides as useful synthons for colloidal semiconductor nanocrystals.
    Brutchey RL
    Acc Chem Res; 2015 Nov; 48(11):2918-26. PubMed ID: 26545235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical Gelation of Metal Chalcogenide Quantum Dots: Applications in Gas Sensing and Photocatalysis.
    Geng X; Liu D; Hewa-Rahinduwage CC; Brock SL; Luo L
    Acc Chem Res; 2023 May; 56(9):1087-1096. PubMed ID: 37078584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Photoexcited Core/Shell Quantum Dots To Spin Polarize Appended Radical Qubits.
    Olshansky JH; Harvey SM; Pennel ML; Krzyaniak MD; Schaller RD; Wasielewski MR
    J Am Chem Soc; 2020 Aug; 142(31):13590-13597. PubMed ID: 32650641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical and experimental studies of the spin trapping of inorganic radicals by 5,5-dimethyl-1-pyrroline N-oxide (DMPO). 3. Sulfur dioxide, sulfite, and sulfate radical anions.
    Zamora PL; Villamena FA
    J Phys Chem A; 2012 Jul; 116(26):7210-8. PubMed ID: 22668066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental measurements and numerical simulations of the transport and retention of nanocrystal CdSe/ZnS quantum dots in saturated porous media: effects of pH, organic ligand, and natural organic matter.
    Li C; Hassan A; Palmai M; Xie Y; Snee PT; Powell BA; Murdoch LC; Darnault CJG
    Environ Sci Pollut Res Int; 2021 Feb; 28(7):8050-8073. PubMed ID: 33051847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Measurement of Electronic Band Structure in Single Quantum Dots of Metal Chalcogenide Composites.
    Benetti D; Cui D; Zhao H; Rosei F; Vomiero A
    Small; 2018 Dec; 14(51):e1801668. PubMed ID: 30294898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamics and Mechanism of a Photocatalyzed Stereoselective [2 + 2] Cycloaddition on a CdSe Quantum Dot.
    Jones LO; Mosquera MA; Jiang Y; Weiss EA; Schatz GC; Ratner MA
    J Am Chem Soc; 2020 Sep; 142(36):15488-15495. PubMed ID: 32815721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photocatalytic hydrogen evolution from glycerol and water over nickel-hybrid cadmium sulfide quantum dots under visible-light irradiation.
    Wang JJ; Li ZJ; Li XB; Fan XB; Meng QY; Yu S; Li CB; Li JX; Tung CH; Wu LZ
    ChemSusChem; 2014 May; 7(5):1468-75. PubMed ID: 24692310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spin trapping endogenous radicals in MC-1010 cells: evidence for hydroxyl radical and carbon-centered ascorbyl radical adducts.
    Bernofsky C; Bandara BM
    Mol Cell Biochem; 1995 Jul; 148(2):155-64. PubMed ID: 8594420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.
    Kim J; Wong CY; Scholes GD
    Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast hole extraction from photoexcited colloidal CdSe quantum dots coupled to nitroxide free radicals.
    Dutta P; Tang Y; Mi C; Saniepay M; McGuire JA; Beaulac R
    J Chem Phys; 2019 Nov; 151(17):174706. PubMed ID: 31703504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible Charge-Carrier Trapping Slows Förster Energy Transfer in CdSe/CdS Quantum-Dot Solids.
    Montanarella F; Biondi M; Hinterding SOM; Vanmaekelbergh D; Rabouw FT
    Nano Lett; 2018 Sep; 18(9):5867-5874. PubMed ID: 30095918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sacrificial oxidation of a self-metal source for the rapid growth of metal oxides on quantum dots towards improving photostability.
    Huang L; Li Z; Zhang C; Kong L; Wang B; Huang S; Sharma V; Ma H; Yuan Q; Liu Y; Shen G; Wu K; Li L
    Chem Sci; 2019 Jul; 10(27):6683-6688. PubMed ID: 31367322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colloidal Synthesis Path to 2D Crystalline Quantum Dot Superlattices.
    Ondry JC; Philbin JP; Lostica M; Rabani E; Alivisatos AP
    ACS Nano; 2021 Feb; 15(2):2251-2262. PubMed ID: 33377761
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.