These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 38023587)
1. Do robots outperform humans in human-centered domains? Riener R; Rabezzana L; Zimmermann Y Front Robot AI; 2023; 10():1223946. PubMed ID: 38023587 [TBL] [Abstract][Full Text] [Related]
2. Recent Advances in Bipedal Walking Robots: Review of Gait, Drive, Sensors and Control Systems. Mikolajczyk T; Mikołajewska E; Al-Shuka HFN; Malinowski T; Kłodowski A; Pimenov DY; Paczkowski T; Hu F; Giasin K; Mikołajewski D; Macko M Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746222 [TBL] [Abstract][Full Text] [Related]
3. Bioinspired 3D Printable Soft Vacuum Actuators for Locomotion Robots, Grippers and Artificial Muscles. Tawk C; In Het Panhuis M; Spinks GM; Alici G Soft Robot; 2018 Dec; 5(6):685-694. PubMed ID: 30040042 [TBL] [Abstract][Full Text] [Related]
4. Scaling Up Soft Robotics: A Meter-Scale, Modular, and Reconfigurable Soft Robotic System. Li S; Awale SA; Bacher KE; Buchner TJ; Della Santina C; Wood RJ; Rus D Soft Robot; 2022 Apr; 9(2):324-336. PubMed ID: 33769081 [TBL] [Abstract][Full Text] [Related]
5. Bioinspired Liquid Metal Based Soft Humanoid Robots. Li N; Yuan X; Li Y; Zhang G; Yang Q; Zhou Y; Guo M; Liu J Adv Mater; 2024 Aug; 36(35):e2404330. PubMed ID: 38723269 [TBL] [Abstract][Full Text] [Related]
6. Special section on biomimetics of movement. Carpi F; Erb R; Jeronimidis G Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305 [TBL] [Abstract][Full Text] [Related]
7. A survey on dielectric elastomer actuators for soft robots. Gu GY; Zhu J; Zhu LM; Zhu X Bioinspir Biomim; 2017 Jan; 12(1):011003. PubMed ID: 28114111 [TBL] [Abstract][Full Text] [Related]
8. HASEL Artificial Muscles for a New Generation of Lifelike Robots-Recent Progress and Future Opportunities. Rothemund P; Kellaris N; Mitchell SK; Acome E; Keplinger C Adv Mater; 2021 May; 33(19):e2003375. PubMed ID: 33166000 [TBL] [Abstract][Full Text] [Related]
9. Plant Robots: Harnessing Growth Actuation of Plants for Locomotion and Object Manipulation. Murakami K; Sato M; Kubota M; Shintake J Adv Sci (Weinh); 2024 Sep; ():e2405549. PubMed ID: 39313932 [TBL] [Abstract][Full Text] [Related]
10. Rossum's universal robots: not the machines. Moran ME J Endourol; 2007 Dec; 21(12):1399-402. PubMed ID: 18186674 [TBL] [Abstract][Full Text] [Related]
11. An Accessible, Open-Source Dexterity Test: Evaluating the Grasping and Dexterous Manipulation Capabilities of Humans and Robots. Elangovan N; Chang CM; Gao G; Liarokapis M Front Robot AI; 2022; 9():808154. PubMed ID: 35546901 [TBL] [Abstract][Full Text] [Related]
12. Biarticular elements as a contributor to energy efficiency: biomechanical review and application in bio-inspired robotics. Junius K; Moltedo M; Cherelle P; Rodriguez-Guerrero C; Vanderborght B; Lefeber D Bioinspir Biomim; 2017 Nov; 12(6):061001. PubMed ID: 28718780 [TBL] [Abstract][Full Text] [Related]
13. Learning-based control approaches for service robots on cloth manipulation and dressing assistance: a comprehensive review. Nocentini O; Kim J; Bashir ZM; Cavallo F J Neuroeng Rehabil; 2022 Nov; 19(1):117. PubMed ID: 36329473 [TBL] [Abstract][Full Text] [Related]
14. Small-scale soft-bodied robot with multimodal locomotion. Hu W; Lum GZ; Mastrangeli M; Sitti M Nature; 2018 Feb; 554(7690):81-85. PubMed ID: 29364873 [TBL] [Abstract][Full Text] [Related]
15. Self-vectoring electromagnetic soft robots with high operational dimensionality. Li W; Chen H; Yi Z; Fang F; Guo X; Wu Z; Gao Q; Shao L; Xu J; Meng G; Zhang W Nat Commun; 2023 Jan; 14(1):182. PubMed ID: 36635282 [TBL] [Abstract][Full Text] [Related]
16. A comparison of the effects and usability of two exoskeletal robots with and without robotic actuation for upper extremity rehabilitation among patients with stroke: a single-blinded randomised controlled pilot study. Park JH; Park G; Kim HY; Lee JY; Ham Y; Hwang D; Kwon S; Shin JH J Neuroeng Rehabil; 2020 Oct; 17(1):137. PubMed ID: 33076952 [TBL] [Abstract][Full Text] [Related]
17. Introduction: the rise of the robots in spinal surgery. Theodore N; Arnold PM; Mehta AI Neurosurg Focus; 2018 Jul; 45(VideoSuppl1):Intro. PubMed ID: 29963916 [TBL] [Abstract][Full Text] [Related]
18. Human-like compliant locomotion: state of the art of robotic implementations. Torricelli D; Gonzalez J; Weckx M; Jiménez-Fabián R; Vanderborght B; Sartori M; Dosen S; Farina D; Lefeber D; Pons JL Bioinspir Biomim; 2016 Aug; 11(5):051002. PubMed ID: 27545108 [TBL] [Abstract][Full Text] [Related]
19. The Effects of Stakeholder Perceptions on the Use of Humanoid Robots in Care for Older Adults: Postinteraction Cross-Sectional Study. Tobis S; Piasek-Skupna J; Neumann-Podczaska A; Suwalska A; Wieczorowska-Tobis K J Med Internet Res; 2023 Aug; 25():e46617. PubMed ID: 37540548 [TBL] [Abstract][Full Text] [Related]
20. Molecular robots with sensors and intelligence. Hagiya M; Konagaya A; Kobayashi S; Saito H; Murata S Acc Chem Res; 2014 Jun; 47(6):1681-90. PubMed ID: 24905779 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]