These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. LungRegNet: An unsupervised deformable image registration method for 4D-CT lung. Fu Y; Lei Y; Wang T; Higgins K; Bradley JD; Curran WJ; Liu T; Yang X Med Phys; 2020 Apr; 47(4):1763-1774. PubMed ID: 32017141 [TBL] [Abstract][Full Text] [Related]
3. A multi-scale framework with unsupervised joint training of convolutional neural networks for pulmonary deformable image registration. Jiang Z; Yin FF; Ge Y; Ren L Phys Med Biol; 2020 Jan; 65(1):015011. PubMed ID: 31783390 [TBL] [Abstract][Full Text] [Related]
4. 4D-CT deformable image registration using multiscale unsupervised deep learning. Lei Y; Fu Y; Wang T; Liu Y; Patel P; Curran WJ; Liu T; Yang X Phys Med Biol; 2020 Apr; 65(8):085003. PubMed ID: 32097902 [TBL] [Abstract][Full Text] [Related]
5. Self-contained deep learning-based boosting of 4D cone-beam CT reconstruction. Madesta F; Sentker T; Gauer T; Werner R Med Phys; 2020 Nov; 47(11):5619-5631. PubMed ID: 33063329 [TBL] [Abstract][Full Text] [Related]
6. An unsupervised multi-scale framework with attention-based network (MANet) for lung 4D-CT registration. Yang J; Yang J; Zhao F; Zhang W Phys Med Biol; 2021 Jun; 66(13):. PubMed ID: 34126608 [TBL] [Abstract][Full Text] [Related]
7. Lung tumor segmentation in 4D CT images using motion convolutional neural networks. Momin S; Lei Y; Tian Z; Wang T; Roper J; Kesarwala AH; Higgins K; Bradley JD; Liu T; Yang X Med Phys; 2021 Nov; 48(11):7141-7153. PubMed ID: 34469001 [TBL] [Abstract][Full Text] [Related]
8. Respiratory deformation registration in 4D-CT/cone beam CT using deep learning. Teng X; Chen Y; Zhang Y; Ren L Quant Imaging Med Surg; 2021 Feb; 11(2):737-748. PubMed ID: 33532273 [TBL] [Abstract][Full Text] [Related]
9. Deformable registration of magnetic resonance images using unsupervised deep learning in neuro-/radiation oncology. Osman AFI; Al-Mugren KS; Tamam NM; Shahine B Radiat Oncol; 2024 May; 19(1):61. PubMed ID: 38773620 [TBL] [Abstract][Full Text] [Related]
10. Deformable MR-CT image registration using an unsupervised, dual-channel network for neurosurgical guidance. Han R; Jones CK; Lee J; Wu P; Vagdargi P; Uneri A; Helm PA; Luciano M; Anderson WS; Siewerdsen JH Med Image Anal; 2022 Jan; 75():102292. PubMed ID: 34784539 [TBL] [Abstract][Full Text] [Related]
11. Inter-fraction deformable image registration using unsupervised deep learning for CBCT-guided abdominal radiotherapy. Xie H; Lei Y; Fu Y; Wang T; Roper J; Bradley JD; Patel P; Liu T; Yang X Phys Med Biol; 2023 Apr; 68(9):. PubMed ID: 36958049 [No Abstract] [Full Text] [Related]
12. UDRSNet: An unsupervised deformable registration module based on image structure similarity. Wang Y; Huang C; Chang W; Lu W; Hui Q; Jiang S; Ouyang X; Kong D Med Phys; 2024 Jul; 51(7):4811-4826. PubMed ID: 38353628 [TBL] [Abstract][Full Text] [Related]
13. An unsupervised image registration method employing chest computed tomography images and deep neural networks. Ho TT; Kim WJ; Lee CH; Jin GY; Chae KJ; Choi S Comput Biol Med; 2023 Mar; 154():106612. PubMed ID: 36738711 [TBL] [Abstract][Full Text] [Related]
14. Deformable registration of chest CT images using a 3D convolutional neural network based on unsupervised learning. Zheng Y; Jiang S; Yang Z J Appl Clin Med Phys; 2021 Oct; 22(10):22-35. PubMed ID: 34505341 [TBL] [Abstract][Full Text] [Related]
15. SPARE: Sparse-view reconstruction challenge for 4D cone-beam CT from a 1-min scan. Shieh CC; Gonzalez Y; Li B; Jia X; Rit S; Mory C; Riblett M; Hugo G; Zhang Y; Jiang Z; Liu X; Ren L; Keall P Med Phys; 2019 Sep; 46(9):3799-3811. PubMed ID: 31247134 [TBL] [Abstract][Full Text] [Related]
16. Unsupervised learning for deformable registration of thoracic CT and cone-beam CT based on multiscale features matching with spatially adaptive weighting. Duan L; Ni X; Liu Q; Gong L; Yuan G; Li M; Yang X; Fu T; Zheng J Med Phys; 2020 Nov; 47(11):5632-5647. PubMed ID: 32949051 [TBL] [Abstract][Full Text] [Related]
17. Combining physics-based models with deep learning image synthesis and uncertainty in intraoperative cone-beam CT of the brain. Zhang X; Sisniega A; Zbijewski WB; Lee J; Jones CK; Wu P; Han R; Uneri A; Vagdargi P; Helm PA; Luciano M; Anderson WS; Siewerdsen JH Med Phys; 2023 May; 50(5):2607-2624. PubMed ID: 36906915 [TBL] [Abstract][Full Text] [Related]
18. Mitigation of motion-induced artifacts in cone beam computed tomography using deep convolutional neural networks. Amirian M; Montoya-Zegarra JA; Herzig I; Eggenberger Hotz P; Lichtensteiger L; Morf M; Züst A; Paysan P; Peterlik I; Scheib S; Füchslin RM; Stadelmann T; Schilling FP Med Phys; 2023 Oct; 50(10):6228-6242. PubMed ID: 36995003 [TBL] [Abstract][Full Text] [Related]
19. An adversarial machine learning framework and biomechanical model-guided approach for computing 3D lung tissue elasticity from end-expiration 3DCT. Santhanam AP; Stiehl B; Lauria M; Hasse K; Barjaktarevic I; Goldin J; Low DA Med Phys; 2021 Feb; 48(2):667-675. PubMed ID: 32449519 [TBL] [Abstract][Full Text] [Related]
20. Deep-learning-based image registration and automatic segmentation of organs-at-risk in cone-beam CT scans from high-dose radiation treatment of pancreatic cancer. Han X; Hong J; Reyngold M; Crane C; Cuaron J; Hajj C; Mann J; Zinovoy M; Greer H; Yorke E; Mageras G; Niethammer M Med Phys; 2021 Jun; 48(6):3084-3095. PubMed ID: 33905539 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]