These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 38023916)

  • 1. New trends in detection of harmful insects and pests in modern agriculture using artificial neural networks. a review.
    Popescu D; Dinca A; Ichim L; Angelescu N
    Front Plant Sci; 2023; 14():1268167. PubMed ID: 38023916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Based on the multi-scale information sharing network of fine-grained attention for agricultural pest detection.
    Linfeng W; Yong L; Jiayao L; Yunsheng W; Shipu X
    PLoS One; 2023; 18(10):e0286732. PubMed ID: 37796844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pest insect control in organically-produced crops of field vegetables.
    Collier RH; Finch S; Davies G
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(2a):259-67. PubMed ID: 12425046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Review of Successes and Impeding Challenges of IoT-Based Insect Pest Detection Systems for Estimating Agroecosystem Health and Productivity of Cotton.
    Kiobia DO; Mwitta CJ; Fue KG; Schmidt JM; Riley DG; Rains GC
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Efficient Pest Detection Framework with a Medium-Scale Benchmark to Increase the Agricultural Productivity.
    Aladhadh S; Habib S; Islam M; Aloraini M; Aladhadh M; Al-Rawashdeh HS
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition pest by image-based transfer learning.
    Dawei W; Limiao D; Jiangong N; Jiyue G; Hongfei Z; Zhongzhi H
    J Sci Food Agric; 2019 Aug; 99(10):4524-4531. PubMed ID: 30868598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Survey on crop pest detection using deep learning and machine learning approaches.
    Chithambarathanu M; Jeyakumar MK
    Multimed Tools Appl; 2023 Apr; ():1-34. PubMed ID: 37362671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rural Workplace Sustainable Development of Smart Rural Governance Workplace Platform for Efficient Enterprise Performances.
    Wu Y; Ma W
    J Environ Public Health; 2022; 2022():1588638. PubMed ID: 35692664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developing precision agriculture using data augmentation framework for automatic identification of castor insect pests.
    Nitin ; Gupta SB; Yadav R; Bovand F; Tyagi PK
    Front Plant Sci; 2023; 14():1101943. PubMed ID: 36895868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crop pest detection by three-scale convolutional neural network with attention.
    Wang X; Zhang S; Wang X; Xu C
    PLoS One; 2023; 18(6):e0276456. PubMed ID: 37267397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Weed Detection Using Deep Learning: A Systematic Literature Review.
    Murad NY; Mahmood T; Forkan ARM; Morshed A; Jayaraman PP; Siddiqui MS
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drones: Innovative Technology for Use in Precision Pest Management.
    Iost Filho FH; Heldens WB; Kong Z; de Lange ES
    J Econ Entomol; 2020 Feb; 113(1):1-25. PubMed ID: 31811713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pest management strategies in traditional agriculture: an African perspective.
    Abate T; van Huis A; Ampofo JK
    Annu Rev Entomol; 2000; 45():631-59. PubMed ID: 10761592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Agricultural Robot-Centered Recognition of Early-Developmental Pest Stage Based on Deep Learning: A Case Study on Fall Armyworm (
    Obasekore H; Fanni M; Ahmed SM; Parque V; Kang BY
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of secondary pests on Bacillus thuringiensis (Bt) crops.
    Catarino R; Ceddia G; Areal FJ; Park J
    Plant Biotechnol J; 2015 Jun; 13(5):601-12. PubMed ID: 25832330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An automatic system for pest recognition and forecasting.
    Wang R; Li R; Chen T; Zhang J; Xie C; Qiu K; Chen P; Du J; Chen H; Shao F; Hu H; Liu H
    Pest Manag Sci; 2022 Feb; 78(2):711-721. PubMed ID: 34672074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A real-time object detection model for orchard pests based on improved YOLOv4 algorithm.
    Pang H; Zhang Y; Cai W; Li B; Song R
    Sci Rep; 2022 Aug; 12(1):13557. PubMed ID: 35941200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of nanotechnology in agriculture with special reference to management of insect pests.
    Rai M; Ingle A
    Appl Microbiol Biotechnol; 2012 Apr; 94(2):287-93. PubMed ID: 22388570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wheat (Triticum aestivum L.)-based intercropping systems for biological pest control.
    Lopes T; Hatt S; Xu Q; Chen J; Liu Y; Francis F
    Pest Manag Sci; 2016 Dec; 72(12):2193-2202. PubMed ID: 27271821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Robust Deep-Learning-Based Detector for Real-Time Tomato Plant Diseases and Pests Recognition.
    Fuentes A; Yoon S; Kim SC; Park DS
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28869539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.