BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 38024990)

  • 1. Switching nanoscale temperature fields with high-order plasmonic modes in transition metal nanorods.
    Setoura K; Tamura M; Oshikiri T; Iida T
    RSC Adv; 2023 Nov; 13(49):34489-34496. PubMed ID: 38024990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic nanoscale temperature shaping on a single titanium nitride nanostructure.
    Tamura M; Iida T; Setoura K
    Nanoscale; 2022 Sep; 14(35):12589-12594. PubMed ID: 35968839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum Mechanical Identification of Quadrupolar Plasmonic Excited States in Silver Nanorods.
    Gieseking RL; Ratner MA; Schatz GC
    J Phys Chem A; 2016 Nov; 120(46):9324-9329. PubMed ID: 27787991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wavelength-Dependent Photothermal Imaging Probes Nanoscale Temperature Differences among Subdiffraction Coupled Plasmonic Nanorods.
    Hosseini Jebeli SA; West CA; Lee SA; Goldwyn HJ; Bilchak CR; Fakhraai Z; Willets KA; Link S; Masiello DJ
    Nano Lett; 2021 Jun; 21(12):5386-5393. PubMed ID: 34061548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale interference patterns of gap-mode multipolar plasmonic fields.
    Tanaka Y; Sanada A; Sasaki K
    Sci Rep; 2012; 2():764. PubMed ID: 23097686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial and Temporal Nanoscale Plasmonic Heating Quantified by Thermoreflectance.
    Wang D; Koh YR; Kudyshev ZA; Maize K; Kildishev AV; Boltasseva A; Shalaev VM; Shakouri A
    Nano Lett; 2019 Jun; 19(6):3796-3803. PubMed ID: 31067061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity.
    Huang WH; Li SF; Xu HT; Xiang ZX; Long YB; Deng HD
    Opt Express; 2018 Mar; 26(5):6202-6213. PubMed ID: 29529812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast Thermal Imprinting of Plasmonic Hotspots.
    Askes SHC; Garnett EC
    Adv Mater; 2021 Dec; 33(49):e2105192. PubMed ID: 34623711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermoplasmonic Semitransparent Nanohole Electrodes.
    Tordera D; Zhao D; Volkov AV; Crispin X; Jonsson MP
    Nano Lett; 2017 May; 17(5):3145-3151. PubMed ID: 28441500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct temperature mapping of nanoscale plasmonic devices.
    Desiatov B; Goykhman I; Levy U
    Nano Lett; 2014 Feb; 14(2):648-52. PubMed ID: 24422562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal deformation of gold nanostructures and its influence on surface plasmon resonance sensing.
    Kim HT; Pathak M; Rajasekaran K; Gupta AK; Yu M
    Nanoscale Adv; 2020 Mar; 2(3):1128-1137. PubMed ID: 36133066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA-Nanotechnology-Enabled Chiral Plasmonics: From Static to Dynamic.
    Zhou C; Duan X; Liu N
    Acc Chem Res; 2017 Dec; 50(12):2906-2914. PubMed ID: 28953361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber Coupled Near-Field Thermoplasmonic Emission from Gold Nanorods at 1100 K.
    Li J; Wuenschell J; Li Z; Bera S; Liu K; Tang R; Du H; Ohodnicki PR; Shen S
    Small; 2021 Apr; 17(17):e2007274. PubMed ID: 33719149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime.
    Wurtz GA; Dickson W; O'Connor D; Atkinson R; Hendren W; Evans P; Pollard R; Zayats AV
    Opt Express; 2008 May; 16(10):7460-70. PubMed ID: 18545451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface assembly and plasmonic properties in strongly coupled segmented gold nanorods.
    Gupta MK; König T; Near R; Nepal D; Drummy LF; Biswas S; Naik S; Vaia RA; El-Sayed MA; Tsukruk VV
    Small; 2013 Sep; 9(17):2979-90. PubMed ID: 23495078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials.
    Song H; Zhang J; Fei G; Wang J; Jiang K; Wang P; Lu Y; Iorsh I; Xu W; Jia J; Zhang L; Kivshar YS; Zhang L
    Nanotechnology; 2016 Oct; 27(41):415708. PubMed ID: 27607837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-Induced Voltages in Catalysis by Plasmonic Nanostructures.
    Wilson AJ; Jain PK
    Acc Chem Res; 2020 Sep; 53(9):1773-1781. PubMed ID: 32786334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.