These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 38025160)

  • 1. Translation of Color Fundus Photography into Fluorescein Angiography Using Deep Learning for Enhanced Diabetic Retinopathy Screening.
    Shi D; Zhang W; He S; Chen Y; Song F; Liu S; Wang R; Zheng Y; He M
    Ophthalmol Sci; 2023 Dec; 3(4):100401. PubMed ID: 38025160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translating color fundus photography to indocyanine green angiography using deep-learning for age-related macular degeneration screening.
    Chen R; Zhang W; Song F; Yu H; Cao D; Zheng Y; He M; Shi D
    NPJ Digit Med; 2024 Feb; 7(1):34. PubMed ID: 38347098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-modality Labeling Enables Noninvasive Capillary Quantification as a Sensitive Biomarker for Assessing Cardiovascular Risk.
    Shi D; Zhou Y; He S; Wagner SK; Huang Y; Keane PA; Ting DSW; Zhang L; Zheng Y; He M
    Ophthalmol Sci; 2024; 4(3):100441. PubMed ID: 38420613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-widefield color fundus photography combined with high-speed ultra-widefield swept-source optical coherence tomography angiography for non-invasive detection of lesions in diabetic retinopathy.
    Li J; Wei D; Mao M; Li M; Liu S; Li F; Chen L; Liu M; Leng H; Wang Y; Ning X; Liu Y; Dong W; Zhong J
    Front Public Health; 2022; 10():1047608. PubMed ID: 36408020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs.
    Gulshan V; Peng L; Coram M; Stumpe MC; Wu D; Narayanaswamy A; Venugopalan S; Widner K; Madams T; Cuadros J; Kim R; Raman R; Nelson PC; Mega JL; Webster DR
    JAMA; 2016 Dec; 316(22):2402-2410. PubMed ID: 27898976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deep learning model for generating fundus autofluorescence images from color fundus photography.
    Song F; Zhang W; Zheng Y; Shi D; He M
    Adv Ophthalmol Pract Res; 2023; 3(4):192-198. PubMed ID: 38059165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lesion-aware generative adversarial networks for color fundus image to fundus fluorescein angiography translation.
    Huang K; Li M; Yu J; Miao J; Hu Z; Yuan S; Chen Q
    Comput Methods Programs Biomed; 2023 Feb; 229():107306. PubMed ID: 36580822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of deep learning image assessment software VeriSee™ for diabetic retinopathy screening.
    Hsieh YT; Chuang LM; Jiang YD; Chang TJ; Yang CM; Yang CH; Chan LW; Kao TY; Chen TC; Lin HC; Tsai CH; Chen M
    J Formos Med Assoc; 2021 Jan; 120(1 Pt 1):165-171. PubMed ID: 32307321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of Automated Machine Learning for Diabetic Retinopathy Image Classification from Multi-field Handheld Retinal Images.
    Jacoba CMP; Doan D; Salongcay RP; Aquino LAC; Silva JPY; Salva CMG; Zhang D; Alog GP; Zhang K; Locaylocay KLRB; Saunar AV; Ashraf M; Sun JK; Peto T; Aiello LP; Silva PS
    Ophthalmol Retina; 2023 Aug; 7(8):703-712. PubMed ID: 36924893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-shot Retinal Artery and Vein Segmentation via Cross-modality Pretraining.
    Shi D; He S; Yang J; Zheng Y; He M
    Ophthalmol Sci; 2024; 4(2):100363. PubMed ID: 37868792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. End-to-end diabetic retinopathy grading based on fundus fluorescein angiography images using deep learning.
    Gao Z; Jin K; Yan Y; Liu X; Shi Y; Ge Y; Pan X; Lu Y; Wu J; Wang Y; Ye J
    Graefes Arch Clin Exp Ophthalmol; 2022 May; 260(5):1663-1673. PubMed ID: 35066704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images.
    Son J; Shin JY; Kim HD; Jung KH; Park KH; Park SJ
    Ophthalmology; 2020 Jan; 127(1):85-94. PubMed ID: 31281057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generating Synthesized Fluorescein Angiography Images From Color Fundus Images by Generative Adversarial Networks for Macular Edema Assessment.
    Xie X; Jiachu D; Liu C; Xie M; Guo J; Cai K; Li X; Mi W; Ye H; Luo L; Yang J; Zhang M; Zheng C
    Transl Vis Sci Technol; 2024 Sep; 13(9):26. PubMed ID: 39312216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiomics-Based Assessment of OCT Angiography Images for Diabetic Retinopathy Diagnosis.
    Carrera-Escalé L; Benali A; Rathert AC; Martín-Pinardel R; Bernal-Morales C; Alé-Chilet A; Barraso M; Marín-Martinez S; Feu-Basilio S; Rosinés-Fonoll J; Hernandez T; Vilá I; Castro-Dominguez R; Oliva C; Vinagre I; Ortega E; Gimenez M; Vellido A; Romero E; Zarranz-Ventura J
    Ophthalmol Sci; 2023 Jun; 3(2):100259. PubMed ID: 36578904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Accurate and Precise Automated Cup-to-Disc Ratio Quantification for Glaucoma Screening.
    Chaurasia AK; Greatbatch CJ; Han X; Gharahkhani P; Mackey DA; MacGregor S; Craig JE; Hewitt AW
    Ophthalmol Sci; 2024; 4(5):100540. PubMed ID: 39051045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RF-GANs: A Method to Synthesize Retinal Fundus Images Based on Generative Adversarial Network.
    Chen Y; Long J; Guo J
    Comput Intell Neurosci; 2021; 2021():3812865. PubMed ID: 34804140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of an Anomaly Detection Model to Screen for Ocular Diseases Using Color Retinal Fundus Images: Design and Evaluation Study.
    Han Y; Li W; Liu M; Wu Z; Zhang F; Liu X; Tao L; Li X; Guo X
    J Med Internet Res; 2021 Jul; 23(7):e27822. PubMed ID: 34255681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated Identification of Different Severity Levels of Diabetic Retinopathy Using a Handheld Fundus Camera and Single-Image Protocol.
    Malerbi FK; Nakayama LF; Melo GB; Stuchi JA; Lencione D; Prado PV; Ribeiro LZ; Dib SA; Regatieri CV
    Ophthalmol Sci; 2024; 4(4):100481. PubMed ID: 38694494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Comparison of fundus photography and fluorescein angiography in grading diabetic retinopathy].
    Gao LQ; Zhang F; Zhou HY; Yan W; Xiong Y; Wang GL
    Zhonghua Yan Ke Za Zhi; 2008 Jan; 44(1):12-6. PubMed ID: 18510235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening for diabetic retinopathy: 1 and 3 nonmydriatic 45-degree digital fundus photographs vs 7 standard early treatment diabetic retinopathy study fields.
    Vujosevic S; Benetti E; Massignan F; Pilotto E; Varano M; Cavarzeran F; Avogaro A; Midena E
    Am J Ophthalmol; 2009 Jul; 148(1):111-8. PubMed ID: 19406376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.